Winzige, maßgeschneiderte Magnete - CeNIDE-Forscher publizieren in „Nature Communications“

Synchrotronstrahlungsquelle BESSY II

Synchrotronstrahlungsquelle BESSY II

Nanomagnete werden heutzutage vielerorts eingesetzt: in der Medizin genauso wie in der Datenspeicherung. Dazu müssen sie mal stark, mal schwach magnetisch sein. Wie man die winzigen Magnete mit ganz bestimmten Eigenschaften herstellt, haben Forscher vom Center for Nanointegration (CeNIDE) an der Universität Duisburg-Essen (UDE) soeben herausgefunden und ihre Ergebnisse veröffentlicht.

Nanomagnete, rund zehntausendmal kleiner als ein Blatt Papier dick ist, ermöglichen heute die fortschrittliche Datenspeicherung, dienen als Kontrastmittel bei der MRT-Untersuchung und werden für Hyperthermie-Behandlungen bei Krebspatienten eingesetzt. Dies sind nur einige Beispiele der Einsatzmöglichkeiten, doch machen sie bereits deutlich, dass bei so vielfältigen Anwendungen ebenso unterschiedliche Eigenschaften der Nanomagnete gefragt sind: Für die Datenspeicherung in Computern müssen die Nanomagnete zum Beispiel fest in eine Richtung ausgerichtet bleiben, um Daten für lange Zeit speichern zu können. Würden sie selbsttätig ihre Magnetisierungsrichtung ändern, ginge die gespeicherte Information verloren. Für die hyperthermische Behandlung von Krebspatienten wiederum braucht man Nanomagnete, die sich ganz leicht umpolen lassen. Für die Behandlung bringt man die winzigen Partikel direkt in den Tumor ein und ändert durch Magnetfelder von außen in schneller Geschwindigkeit ihre Magnetisierungsrichtung. Dadurch erzeugen die Nanomagnete Hitze, die die umliegenden Krebszellen lokal zerstört.

In Zusammenarbeit der Arbeitsgruppen von Experimentalphysiker Prof. Heiko Wende und dem Theoretischen Physiker Prof. Peter Entel wurden nun konkrete Regeln definiert, mit denen es möglich ist, schon bei der Herstellung der Nanomagnete deren Eigenschaften genau zu bestimmen. Dazu hat das Team um Prof. Wende die Nanopartikel mit unterschiedlichen Metallen ummantelt und anschließend deren Effekt auf die magnetischen Eigenschaften der innenliegenden Partikel gemessen. Um möglichst aussagekräftige, detaillierte Messwerte zu erhalten, haben die Forscher ein Messgerät etwas anderer Größenordnung eingesetzt: BESSY II vom Helmholtz-Zentrum Berlin beschleunigt Elektronen in einem 240 Meter langen Ringsystem auf beinahe Lichtgeschwindigkeit. Die dadurch erzeugten hochbrillanten Röntgenstrahlen lassen Rückschlüsse auf die magnetischen Eigenschaften der Probe zu. Dr. Carolin Antoniak hat sich so manche Nacht an den Schalttafeln des Großgeräts um die Ohren geschlagen: „Es hat sich aber definitiv gelohnt“, betont die Physikerin. „Nur hier konnten wir unsere Messungen so detailliert durchführen und zwischen unterschiedlichen Magnetisierungstypen unterscheiden.“ Parallel dazu hat Dr. Markus Gruner aus der Arbeitsgruppe von Prof. Entel den Einfluss der verschiedenen Ummantelungsmetalle theoretisch berechnet – und zwar für jedes einzelne Atom in einem Nanomagneten. Für diese komplizierten Rechnungen nutzte der Theoretische Physiker Europas größten akademischen Forschungsrechner JUGENE am Forschungszentrum Jülich, der bis zu eine Billiarde Rechenoperationen pro Sekunde ausführen kann. „Man steht in einer Halle neben 72  großen Schränken, die den Rechner beinhalten“, zeigt sich Gruner beeindruckt. „Wir mussten mehrere Wochen lang auf mehr als 1.000 Prozessoren gleichzeitig rechnen, bis wir Gewissheit hatten. So etwas geht nur auf JUGENE.“

Beide Ansätze – experimentell und theoretisch – ergänzen sich hier ideal: Die theoretische Berechnung ist zwar extrem genau, beruht jedoch auf Annahmen. Annahmen, die im Experiment bewiesen wurden. So ist es der Forscherkooperation nun möglich, vorauszusagen, mit welcher Metallummantelung welche Eigenschaften zu erreichen sind. Auch Charakteristika von bisher nicht hergestellten Arten von Nanomagneten können nun auf Grundlage der erhaltenen Daten zuverlässig berechnet werden. So ist es möglich, die Nanomagnete je nach Art der gewünschten Eigenschaften bereits in der Produktion maßzuschneidern. Eine ungemeine Erleichterung für Anwender jeder Art.

„Für die Zukunft haben wir uns vorgenommen, die Nanomagnete mit organischen Materialien zu umhüllen“, erklärt Wende. „Eventuell ist es dann möglich, die Eigenschaften nachträglich durch äußere Einflüsse wie zum Beispiel Licht zu modifizieren.“

Kontakt & Information:

CeNIDE – Center for NanointegrationDuisburg-Essen

Universität Duisburg-Essen
Frau Birte Vierjahn
Öffentlichkeitsarbeit
Gebäude LH
Forsthausweg 2
47057 Duisburg
Fon: +49.203.379.1456
Fax: +49.203.379.1895
E-Mail: birte.vierjahn@uni-due.de
www.cenide.de

Dr. Carolin Antoniak
Experimentalphysik - AG Wende
Universität Duisburg-Essen
Gebäude MD
Lotharstr. 1
47057 Duisburg
Fon: +49.203.379.2389
Fax: +49.203.379.3601
E-Mail: carolin.antoniak@uni-due.de
http://www.uni-due.de/physik/wende/

Birte Vierjahn - UDE

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.