Erfolgsgeschichte mit Fortsetzung - 10 Jahre Deutsch-Russisches Labor

Eine Erfolgsgeschichte feiert Geburtstag: Das Russisch-Deutsche Labor an der Speicherringanlage BESSY II des Helmholtz-Zentrums Berlin in Adlershof wird zehn Jahre alt. Die Einrichtung, in der Wissenschaftler zum fundamentalen Verständnis der Struktur von Materie forschen, ist eine in dieser Form einzigartige Kooperation zwischen deutschen und russischen Wissenschaftlern.

Sie wird gemeinsam getragen vom Helmholtz-Zentrum Berlin, der Freien Universität Berlin, der Technischen Universität Dresden, der Staatlichen Universität St. Petersburg, dem Ioffe Institute in St. Petersburg sowie dem Kurchatov Institut und dem Shubnikov Institut für Kristallographie in Moskau. Im Rahmen des Deutsch-Russischen Wissenschaftsjahres wird das zehnjährige Bestehen mit einem Workshop am 27. und 28. Juni in Berlin gefeiert. Dabei wird auch eine Vertragsverlängerung mit dem Ziel unterzeichnet, die Forschungskapazitäten auszuweiten.

Im Zentrum des Russisch-Deutschen Labors steht ein Strahlrohr für sogenannte weiche Röntgenstrahlung, mit der die atomare Struktur von Materie erforscht werden kann. „Diese Versuche mit Synchrotron-Strahlung spielen in der Grundlagenforschung eine sehr große Rolle“, sagt Eckart Rühl, Professor für Physikalische Chemie an der Freien Universität Berlin und Vorsitzender des Lenkungsausschusses des Russisch-Deutschen Labors. So könnten damit die Eigenschaften komplexer Materialien wie Graphen untersucht werden – ein vielversprechendes Material für mikroelektronische Anwendungen.

Das Russisch-Deutsche Labor ist gefragt bei Wissenschaftlern beider Länder: Mehr als 250 Publikationen in renommierten Fachmagazinen gingen bisher aus Forschungsarbeiten am Labor hervor. 48 Diplom-, 14 Doktorarbeiten und zwei Habilitationen basieren zu großen Teilen auf Ergebnissen, die hier erarbeitet wurden. Unterstützt werden die Forschungen im Russisch-Deutschen Labor vom Internationalen Exzellenzzentrum für Naturwissenschaften, das die Staatliche Universität St. Petersburg und die Freie Universität Berlin 2010 gegründet haben. Das „German-Russian Interdisciplinary Science Center“ (G-RISC), das seinen Sitz in St. Petersburg hat und vom Deutschen Akademischen Austauschdienst aus Mitteln des Auswärtigen Amtes finanziert wird, stellt einen Wissenschaftler, der die Nutzer des Berliner Labors bei den Messungen betreut.

Seit Langem übersteigt die Nachfrage von Forschern, die Materialproben mithilfe des Strahlrohrs im Berliner Labor untersuchen möchten, die Kapazität der Labor-Messplätze. Mithilfe von Fördermitteln des Bundesforschungsministeriums sollen die experimentellen Ressourcen deshalb ausgebaut werden. Geplant ist der Bau eines sogenannten Undulator-Strahlrohrs, mit dem das Russisch-Deutsche Labor in den nächsten zwei Jahren zu einem weltweit führenden Messplatz für winkel- und spinaufgelöste Photoelektronenspektroskopie ausgebaut werden soll. Ziel ist die Untersuchung von magnetischen Materialien mit Dimensionen im Nanometerbereich.

Weitere Auskünfte erteilen Ihnen gern:

Prof. Dr. Eckart Rühl, Institut für Chemie und Biochemie (Physikalische und Theoretische Chemie) der Freien Universität Berlin, Tel: +49-30-838-52396, E-Mail: ruehl@chemie.fu-berlin.de

Dr. Walter Braun, Leiter Abteilung Nutzerkoordination, Helmholtz-Zentrum Berlin, Albert-Einstein-Str.  15, 12489 Berlin, Tel: +49-30-8062-12927, E-Mail: walter.braun@helmholtz-berlin.de

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.