Ultraschnelle Ummagnetisierung beobachtet

Bild oben Mitte: Während sich die Magnetisierung des Gadolinium<br />(roter Pfeil) noch nicht verändert, hat sich die des Eisens (blauer<br />Pfeil) bereits umgekehrt.<br />Großes <br />aus, die Röntgenpulse (blau) messen diese.<br />Grafik: HZB/Radu

Bild oben Mitte: Während sich die Magnetisierung des Gadolinium
(roter Pfeil) noch nicht verändert, hat sich die des Eisens (blauer
Pfeil) bereits umgekehrt.
Großes
aus, die Röntgenpulse (blau) messen diese.
Grafik: HZB/Radu © Der Laserpuls pink löst die Ummagnetisierung

Ein bisher unbekanntes magnetisches Phänomen könnte die Datenspeicherung um mehrere Größenordnungen beschleunigen.

Die stetig wachsende Informationsflut produziert immer größere Datenmengen, die immer schneller verarbeitet werden sollen. Bislang ist die physikalische Grenze der Aufnahmegeschwindigkeit von magnetischen Speichermedien aber noch weitgehend unerforscht. In Experimenten am Teilchenbeschleuniger BESSY II des Helmholtz-Zentrum Berlin konnten niederländische Forscher nun eine ultraschnelle Ummagnetisierung realisieren und entdeckten dabei ein überraschendes Phänomen.

In magnetischen Speichern werden Daten kodiert, indem man punktuell die Magnetisierung umkehrt. Äquivalent zu „0“ und „1“ arbeiten diese Speicher auf Basis des sogenannten magnetischen Moments der Atome, das im Speichermaterial „parallel“ und „antiparallel“ ausgerichtet sein kann.

Die Ausrichtung bestimmt ein quantenmechanischer Effekt, den die Forscher „Austauschwechselwirkung“ nennen. Im Magnetismus ist das die stärkste und deshalb schnellste „Kraft“. Weniger als 100 Femtosekunden benötigt sie, um die magnetische Ordnung wiederherzustellen, wenn sie gestört wurde. Eine Femtosekunde entspricht einem Millionstel einer Milliardstel Sekunde. Ilie Radu und seine Kollegen untersuchten nun erstmals, das bisher unbekannte Verhalten der magnetischen Ausrichtung, bevor die Austauschwechsel-wirkung einsetzt. Gemeinsam mit Forschern aus Berlin und York publizieren sie die Ergebnisse in der Zeitschrift Nature (10.1038/nature09901, 2011).

Für das Experiment benötigten die Forscher einerseits einen ultrakurzen Laserpuls, der das Material erhitzt und somit die Ummagnetisierung anregt. Zum anderen, mussten sie mit einem ebenso kurzen Röntgenpuls gleichzeitig beobachten, wie sich die Magnetisierung ändert. Diese weltweit einzigartige Kombination aus Femtosekunden-Laser und zirkular polarisiertem Femtosekunden-Röntgenlicht steht Wissenschaftlern nur an der Synchrotron-strahlungsquelle BESSY II zur Verfügung.

In ihrem Experiment erforschten die Wissenschaftler eine Legierung aus Gadolinium, Eisen und Kobalt (GdFeCo), in der die magnetischen Momente natürlicher Weise antiparallel ausgerichtet. Sie beschossen das GdFeCo für 60 Femtosekunden mit einem Laserpuls und verfolgten die Umkehrung mit dem zirkular polarisierten Röntgenlicht, das es zudem ermöglicht zwischen einzelnen Elementen zu unterscheiden. Dabei erlebten sie eine Überraschung: Die Magnetisierung der Fe-Atome kehrte sich bereits nach 300 Femtosekun-den um, die der Gd-Atome benötigte fünfmal so lang. Dadurch waren alle Atome kurzzeitig parallel ausgerichtet und das Material stark magnetisiert. „Das ist genauso merkwürdig, als würde sich der Nordpol eines Magneten langsamer umdrehen, als dessen Südpol“, sagt Ilie Radu.

Mit ihrer Beobachtung konnten die Forscher nicht nur beweisen, dass eine Ummagnetisierung im Femtosekunden-Bereich möglich ist. Auch eine konkrete technische Anwendung lässt sich daraus ableiten: „Auf die magnetische Datenspeicherung übertragen, würde das eine Schreib- und Lesegeschwindigkeit im Terahertz-Bereich bedeuten. Das wäre rund 1000 Mal schneller, als ein heute handelsüblicher Computer“, so Radu.

F. Rott


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.