Exzellenz bei der Lichtbeugung

Sägezahnstruktur eines Blaze-Gitters

Sägezahnstruktur eines Blaze-Gitters

HZB richtet Technologiezentrum für hocheffiziente optische Präzisionsgitter ein

Der Berliner Senat für Wissenschaft und Forschung hat finanzielle Mittel aus dem Europäischen Fonds für regionale Entwicklung (EFRE) bewilligt, um ein Technologiezentrum für hocheffiziente optische Präzisionsgitter am Helmholtz-Zentrum Berlin (HZB) aufzubauen. Das Vorhaben wird vom EFRE mit fünf Millionen Euro gefördert und vom neuen HZB-Institut für Nanometeroptik und Technologie umgesetzt. Das neue Technologiezentrum wird die Bedeutung Berlins als Standort für Präzisionsoptiken weiter stärken. Im Technologiezentrum für hocheffiziente optische Präzisionsgitter sollen neue Beugungsgitter für Synchrotronstrahlung entwickelt werden.

Die vom Beschleunigerring BESSY II des HZB erzeugte Synchrotronstrahlung wird in vielen verschiedenen Forschungsfeldern angewendet: Grundlagenforschung, Lebenswissenschaften, Katalyse- und Materialforschung oder auch Archäometrie. Das Bestrahlen von Proben mit kurzwelligem Röntgenlicht ermöglicht einzigartige Einblicke in die Struktur der Materie.

Um die untersuchten Proben detailliert auswerten zu können, müssen die Wissenschaftler die Eigenschaften des Lichts, mit dem sie ihre Materialien bestrahlen, genau kennen. Deshalb wird das eingestrahlte Röntgenlicht in seine einzelnen Wellenlängen aufgefächert. Beugungsgitter filtern die für die jeweilige Untersuchung benötigte Wellenlänge aus dem Röntgenlicht heraus.

Solche Gitter erhält man, indem Siliziumträger mit einer sehr dünnen Goldlage beschichtet werden. Auf der spiegelnden Oberfläche werden bis zu 4000 Linien pro Millimeter eingeprägt. An diesen Strukturen wird das Röntgenlicht gebeugt, sodass nur das Licht der benötigten Wellenlänge auf die Proben gelenkt wird.

Die Aufgabe des Technologiezentrums ist es, neue Beugungsgitter zu entwickeln, die eine möglichst hohe Lichtausbeute erreichen. Das gelingt den Forschern mit so genannten Blaze-Gittern: das sind Gitter, die ein eingeprägtes Sägezahn-Profil besitzen.

Präzise Sägezahnstrukturen im Nanometerbereich herzustellen, ist bis heute eine technologische Herausforderung. Die Forscher müssen Lösungen finden, um eine Abstandsgenauigkeit der Sägezähne im Nanometerbereich zu realisieren und gleichzeitig einen extrem flachen Sägezahnwinkel zu erreichen.

Der Abstand der Sägezähne im Gitter soll möglichst klein sein, damit Untersuchungen mit einer höheren Auflösung des Lichts (kleinere Wellenlängenungenauigkeit) durchgeführt werden können. Ein flacher Sägezahlwinkel ist wichtig, um die Intensität des Lichts im Röntgenbereich zu erhöhen.

Gelingt es den Forschern, beide Eigenschaften in den Blaze-Gittern umzusetzen, werden sich die Bedingungen für Experimente mit Synchrotronstrahlung deutlich verbessern. 

Im Rahmen des geförderten Projekts wird die Technologie für solche Blaze-Gitter weiterentwickelt. Die EFRE-Förderung ermöglicht nun, ganz neue Wege bei dieser Entwicklungsarbeit gehen zu können. Einerseits wird das Technologiezentrum die bisherigen Kompetenzen in der Mikro- und Nanotechnik einsetzen, um mit neuen Prozessen die Anforderungen an die Präzision der Sägezahnprofile zu erfüllen. Andererseits werden Ideen für neue Gittergeometrien umgesetzt, für deren Realisierung das Technologiezentrum eine weltweit anerkannte Expertise besitzt.

Die neuartigen optischen Elemente finden Anwendung in effizienten Spektroskopie-Experimenten mit Synchrotronstrahlung.

Im Erfolgsfall soll eine Firma ausgegründet werden, die mit den neu entwickelten Technologien solche Blaze-Gitter herstellt. Damit würden neue Hochtechnologie-Arbeitsplätze in Berlin entstehen.
Das neue Technologiezentrum wird in das Institut für Nanometeroptik und Technologie am HZB integriert und durch die Arbeitsgruppe von Dr. Bernd Löchel betreut. Das Institut hat bereits Erfahrung mit verschiedenen Herstellungstechnologien und dem Einsatz von Gittern.

FR / SZ


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.