PVcomB produziert erste Schichten

 Die erste am PVcomB produzierte Silizium-Schicht<br> auf 30x30 cm2 Glas

Die erste am PVcomB produzierte Silizium-Schicht
auf 30x30 cm2 Glas

Erfolgreiche erste Beschichtung: die Glasplatte verlässt <br>das Cluster-Tool

Erfolgreiche erste Beschichtung: die Glasplatte verlässt
das Cluster-Tool

Herzstück der neuen Silizium-Forschungslinie: <br>das Clustertool der Firma Applied Materials

Herzstück der neuen Silizium-Forschungslinie:
das Clustertool der Firma Applied Materials

Ein neuer Abschnitt in der Geschichte des PVcomB hat begonnen: Am 15.11. erfolgte die erste eigene Beschichtung von 30 x 30 cm2 Glasmodulen mit amorphem Silizium. Die Deposition erfolgte an einer PECVD-Clusteranlage der Firma Applied Materials, Herzstück der Forschungslinie für Dünnschicht-Silizium, die am PVcomB aufgebaut wird.

 PECVD steht für plasma enhanced chemical vapour deposition (plasmaunterstützte chemische Gasphasenabscheidung), momentan auch für industrielle Anwendungen die Technik der Wahl für diese Art von Solarzellen. In dem Cluster-Tool werden hauchdünne amorphe und mikrokristalline Siliziumschichten (a-Si/µc-Si) auf Trägermaterialien wie Glas aufgebracht. Diese Materialkombination weist im Vergleich zur „klassischen“, auf Wafern basierenden Silizium-Technologie viele Vorteile wie niedrigeren Material- und Energieverbrauch auf. Allerdings müssen für Photovoltaik-Modulen dieser Art höhere Wirkungsgrade erreicht werden. Die weitere Aufskalierung in die Massenproduktion ist für die Dünnschicht Silizium Technologie am besten verstanden und kontrolliert.

An der PVcomB Forschungslinie wird eine industrienahe Produktion von Photovoltaik-Modulen möglich, die mit einer Größe von 30 x 30 Quadratzentimetern eine Brücke zwischen den kleinen, manchmal nur wenigen Millimetern kleinen Laborzellen und den großen, oftmals mehrere Quadratmeter messenden Industriemodulen bilden. „Mit diesem Cluster-Tool arbeiten wir am PVcomB unter ähnlichen Bedingungen wie die Industrie. So bilden wir eine direkte Brücke zwischen der Grundlagenforschung und Industrie und können die Unternehmen unterstützen, sowohl mit Forschungsergebnissen als auch mit praktisch ausgebildeten Wissenschaftlern.“ erläutert Dr. Rutger Schlatmann, Direktor des PVcomB.

EZ


Das könnte Sie auch interessieren

  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.
  • „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Interview
    18.06.2024
    „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Am 11. und 12. Juni fand die Ukraine Recovery Conference in Berlin statt. Begleitend diskutierten Vertreter*innen von Helmholtz, Fraunhofer und Leibniz, wie Forschung zu einem nachhaltigen Wiederaufbau der Ukraine beitragen kann. In diesem Interview spricht Bernd Rech, wissenschaftlicher Geschäftsführer am HZB, über die Bedeutung von Forschung während des Krieges und Projekten wie Green Deal Ukraina.

  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.