Magnetischer Fingerabdruck zeigt Stromverlust an

HZB-Forscher zeigen, warum lichterzeugter Strom in organischen Solarzellen teilweise verloren geht

Herkömmliche Solarzellen aus kristallinem Silizium werden aufwendig und Energie intensiv hergestellt. Organische Solarzellen sind kostengünstiger, produzieren aber bisher noch zu wenig Strom. Woran das liegt, ist bis heute nicht vollständig geklärt. Eine von HZB-Forschern entwickelte Methode zeigt nun, dass der Stromfluss in der Solarzelle vom Spin der stromtragenden Teilchen abhängen kann.

Seit rund zehn Jahren beschäftigen sich Wissenschaftler mit organischen Solarzellen. Sie können umweltfreundlich hergestellt werden und lassen sich auf unterschiedlichste Materialien, zum Beispiel Plastikfolie, aufbringen. Verglichen mit Silizium-Solarzellen produzieren sie aber nur ein Fünftel der elektrischen Energie – ein Großteil des Stroms versickert im Material.

Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) haben eine Methode entwickelt, die Stromverluste anhand des magnetischen Fingerabdrucks der stromtragenden Teilchen nachweist. Hierfür manipulieren die Forscher auf raffinierte Weise die magnetischen Eigenschaften dieser Teilchen. Gemeinsam mit schottischen Forschern publizieren sie dies in der Zeitschrift Physical Review Letters (10.1103/PhysRevLett.105.176601 / Phys. Rev. Lett. 105, 176601 (2010)).

Da organische Solarzellen aus Kohlenstoff-Verbindungen, also Kunststoffen, bestehen, werden sie auch Plastiksolarzellen genannt. Das Herz der Zelle bildet eine nur 100-Millionstel Millimeter dünne Schicht, die aus zwei Bestandteilen besteht: Polymere und fußballförmige Fullerene. Beide sind miteinander vermischt. Fällt Licht auf die Mischschicht, wird das Polymer in einen angeregten Zustand versetzt, den man Exziton nennt. Trifft ein Exziton auf ein Fußballmolekül springt ein Elektron auf das Fulleren und im Polymer verbleibt ein „Loch“. Damit Strom fließt, müssen die Elektronen und Löcher zu den Kontakten an den jeweils gegenüberliegenden Seiten der Solarzelle gelangen. Die Elektronen hüpfen über das Fulleren, die Löcher auf der Polymerkette. Die Löcher, Wissenschaftler nennen sie Polaronen, können sich auf diesem Weg gegenseitig behindern und senken dadurch den Wirkungsgrad der Solarzelle. Dieser gibt das Verhältnis zwischen gewonnener elektrischer und von der Sonne eingestrahlter Energie an. 

Die Wissenschaftler konnten mit ihrer Methode, der elektrisch detektierten magnetischen Resonanz (EDMR), sichtbar machen, dass die Polaronen sich immer dann behindern, wenn ihr magnetisches Moment (Spin) identisch ist. „Wir konnten diese schon länger vermutete sogenannte Bipolaron-Bildung erstmals sichtbar machen und somit beweisen“, sagt Jan Behrends, der während seiner Promotion am HZB-Institut für Silizium-Photovoltaik die Messungen durchgeführt hat.

Bei der EDMR-Methode manipulieren die Forscher mit Hilfe eines äußeren Magnetfeldes und einer Mikrowelle den Spin der Polaronen. Durch einen Resonanzeffekt lässt sich der vorher zufällig verteilte Spin wie eine Kompassnadel drehen und gezielt beeinflussen. Die Messdaten zeigten, dass der Strom frei fließt, wenn die winzigen Magnete entgegengesetzt ausgerichtet sind und bei gleicher Ausrichtung blockiert wird.

Dank des neuen experimentellen Aufbaus der ursprünglich für Silizium entwickelten Methode, gelang es den Forschern, solche Stromverluste in Plastiksolarzellen bei Raumtemperatur nachzuweisen. Mit dieser grundlegenden Erkenntnis könnten organische Solarzellen weiter verbessert werden, zum Beispiel indem man gezielt Kunststoffe entwickelt, die keine Spinblockade aufweisen.

Franziska Rott

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.
  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.