Grünes Licht für BERLinPro

Helmholtz-Zentrum Berlin entwickelt neuartige Beschleunigertechnologie

Der Helmholtz-Senat, das oberste Entscheidungsgremium der Helmholtz-Gemeinschaft, hat in seiner Herbstsitzung einstimmig die Realisierung des Projekts BERLinPro unter Federführung des Helmholtz-Zentrum Berlin (HZB) empfohlen. Die Finanzierung des Projekts als strategische Ausbauinvestition ist damit sichergestellt. Über eine Laufzeit von fünf Jahren investieren die Helmholtz-Gemeinschaft, das Land Berlin und das HZB insgesamt 25 Millionen Euro.

Mit dem Projekt BERLinPro will das HZB zusammen mit seinen Partnern in der Helmholtz-Gemeinschaft und weltweit eine neuartige Beschleunigertechnologie weiterentwickeln und das Prinzip des „Energy Recovery Linac" (ERL, deutsch: Linearbeschleuniger mit Energierückgewinnung) auf eine neue technologische Basis stellen. Gelingt BERLinPro, werden die Leistungsparameter von ERLs um Größenordnungen gesteigert. Zahlreiche neue Anwendungen wären mit ERL-Technologien, die auf BERLinPro fußen, in der Zukunft möglich.

Zum Beispiel könnten solche Technologien als so genannte „Inverse Compton Scattering Strahlungsquelle" in der medizinischen Therapie und Diagnostik eingesetzt werden. Für die Teilchenphysik könnten neue Elektronenkühler entwickelt werden, die die Grenzen der konventionell eingesetzten elektrostatischen Kühler überwinden. Des Weiteren kann die Technologie genutzt werden, um die Isotopenzusammensetzung radioaktiver Abfälle in ihrem Containment, vor der Lagerung oder Weiterbehandlung zweifelsfrei zu bestimmen. Und in Synchrotronquellen wird es mit ERL-Technologie möglich, kurze hochbrillante Lichtpulse bei sehr hohen Strömen zu erzeugen.

„Die Empfehlung, das Projekt zu finanzieren, ist eingroßer Erfolg für unser Zentrum", stellte die Geschäftsführerin des HZB, Prof. Dr. Anke Rita Kaysser-Pyzalla, nach der Senatssitzung fest: „Der Helmholtz-Senat zeigt damit sein großes Vertrauen zu den Wissenschaftlerinnen und Wissenschaftlern am HZB. Er bestätigt, dass wir in der Beschleunigertechnologie weltweit eine Spitzenposition innehaben, die wir jetzt ausbauen können."

„Die Helmholtz-Gemeinschaft hat den Auftrag, Lösungen für gesellschaftlich relevante Probleme zu erarbeiten und dafür auch neue Technologien zu entwickeln", sagt Prof. Dr. Jürgen Mlynek, Präsident der Helmholtz-Gemeinschaft: „BERLinPro ist ein wichtiges Vorhaben, mit dem wir ganz neue Türen in der Beschleunigerphysik aufstoßen werden."

Das ERL-Prinizp wurde weltweit bisher nur für kleine Elektronenströme gezeigt. Im Rahmen von BERLinPro soll nun eine kompakte Anlage aufgebaut werden, die alle Schlüsselkomponenten einer Photonenquelle enthält. Während der 2011 beginnenden Bauphase sollen alle kritischen Komponenten entwickelt und erprobt werden – zum Beispiel die hochbrillante Elektronenquelle, supraleitende Beschleunigersektionen sowie Magnetsysteme zur Strahlrückführung. Bei bisher unerreicht hoher Strahlleistung und Brillanz sollen das ERL-Prinzip demonstriert und die Aspekte von Strahlstabilität, Kontrolle des Strahlverlusts und Flexibilität der Strahlparameter studiert werden.

In BERLinPro wird ein Linearbeschleuniger einen Elektronenstrahl erzeugen, der in so genannten Kavitäten – das sind Niob-Metallröhren, die mit flüssigem Helium auf eine Temperatur knapp über dem absoluten Nullpunkt gekühlt werden – auf eine Energie beschleunigt wird, wie es dem Durchlaufen einer Spannung von 100 Millionen Volt entspräche.
Mit dieser Energie fliegen die Elektronen in ein Strahlführungssystem, in dem sie auf eine Kreisbahn gezwungen werden.

BERLinPro soll nun zeigen, dass ein Elektronenstrahl höchster Intensität und Dichte durch dieses Strahlführungssystem geleitet und dann so zum Linearbeschleuniger zurück transportiert werden kann, dass die Elektronen dort im elektromagnetischen Feld abgebremst werden und ihre Energie an das Feld zurückgeben. Die zurückgewonnene Energie des Strahls steht dann zur Verfügung, um einen frischen Elektronenstrahl zu beschleunigen – der wiederum die gleichen exzellenten Parameter aufweist wie der Strahl aus dem Umlauf zuvor.

IH


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.