Forschung für die Dünnschichtphotovoltaik - Fraunhofer IST und HZB vereinbaren enge Zusammenarbeit

Großflächenbeschichtung am Fraunhofer IST </br>(Reiner Meier, BFF Wittmar)

Großflächenbeschichtung am Fraunhofer IST
(Reiner Meier, BFF Wittmar)

Wie kann der Wirkungsgrad von Solarzellen weiter gesteigert werden? Wie können die Kosten gesenkt werden? Antworten auf diese und andere Fragen zur Dünnschicht-photovoltaik geben das Fraunhofer-Institut für Schicht- und Oberflächentechnik IST und das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) künftig gemeinsam. Beide Institute wollen ihre zentralen Kompetenzen zukünftig bündeln: das Fraunhofer IST bringt sein know how zur Dünnschichttechnik ein, das HZB ist führend auf dem Gebiet der Dünnschichtphotovoltaik

„Im Bereich Dünnschichtphotovoltaik sehen wir einen wichtigen Zukunftsmarkt, für den wir künftig gemeinsam entwickeln möchten“, so Institutsleiter Professor Dr. Günter Bräuer vom Fraunhofer IST. „Der Transfer von Forschungsergebnissen in die Industrie wird durch unsere Kooperation gestärkt“ ergänzt Professor Dr. Wolfgang Eberhardt, Geschäftsführer des HZB. Um den Technologietransfer zu beschleunigen, wurde am HZB das Kompetenzzentrum Dünnschicht- und Nanotechnologie für Photovoltaik Berlin (PVcomB) gegründet. Hier werden Produktionstechniken zur Herstellung von Dünnschichtmodulen aus Silizium- und CIS erprobt. Das IST bringt dabei seine Forschungskompetenz auf den Gebieten Oberflächentechnik und Schichtsysteme ein.

Die Geschäftsführer der beiden Institutionen gaben die Zusammenarbeit auf der 8. International Conference on Coatings on Glass and Plastics ICCG, die vom 13. bis 17. Juni in Braunschweig stattfand, bekannt. Die ICCG ist die führende Konferenz im Bereich Glas- und Kunststoffbeschichtungen und eine wichtige Plattform für Experten und Entscheidungsträger aus Wissenschaft und Wirtschaft, um Zukunftstrends, neue Technologien, Entwicklungen und Anwendungen unter anderem auch in der Photovoltaik zu diskutieren.

EZ


Das könnte Sie auch interessieren

  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.
  • „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Interview
    18.06.2024
    „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Am 11. und 12. Juni fand die Ukraine Recovery Conference in Berlin statt. Begleitend diskutierten Vertreter*innen von Helmholtz, Fraunhofer und Leibniz, wie Forschung zu einem nachhaltigen Wiederaufbau der Ukraine beitragen kann. In diesem Interview spricht Bernd Rech, wissenschaftlicher Geschäftsführer am HZB, über die Bedeutung von Forschung während des Krieges und Projekten wie Green Deal Ukraina.

  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.