Katalase und Methämoglobin: so ähnlich und doch verschieden

Wichtige physiologische Prozesse beim Fettabbau und Sauerstofftransport aufgeklärt

Die Katalase ist eines der wichtigsten Enzyme im menschlichen Organismus und daher vielfach untersucht. Trotzdem war bislang nicht bekannt, warum das Protein, dessen aktives Zentrum ähnlich wie beim Methämoglobin aufgebaut ist, ein deutlich anderes Verhalten zeigt. Forscher des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben in Kooperation mit einem internationalen Wissenschaftlerteam dieses Rätsel gelöst. Sie publizieren die Ergebnisse in der online erscheinenden Ausgabe der Zeitschrift Physical Chemistry Chemical Physics (DOI: 10.1039/b924245g)

Anders als Methämoglobin spaltet das Enzym Katalase mit einer außerordentlich hohen Effektivität Abbauprodukte der Fettsäurespaltung (Wasserstoffper­oxid), und es schützt den Organismus gegen den Angriff von so genannten Oxidantien. Ein Katalase-Molekül kann in der Sekunde bis zu eine Million Wasserstoffperoxid-Moleküle spalten, wobei Wasser und Sauerstoff entstehen. Methämoglobin dagegen bindet Sauerstoff und transportiert ihn.

Emad Aziz und Kathrin Lange (HZB) haben die elektronische Struktur der Katalase und des Methämoglobins mithilfe der Röntgenabsorptionsspektroskopie am Elek­tronenspeicherring BESSY II untersucht und den Ursprung der hohen enzymatischen Aktivität der Katalase aufgeklärt. Normalerweise ist es nicht möglich, Proteine in ihrer natürlichen Umgebung, also in Flüssigkeiten, mit weicher Röntgenstrahlung zu analysieren. Man benötigt ein Vakuum und muss die Proteine kristallisieren. Aufschlüsse über ihre Reaktionsmechanismen und Aktivitäten im Körper bekommt man so jedoch nicht, da sich ein im Kristall geordnetes Protein anders verhält als in natürlicher Umgebung, wo es gelöst in einer Flüssigkeit vorliegt.

Emad Aziz hat deshalb eine spezielle Experimentierkammer am Synchrotronring BESSY II konstruiert und aufgebaut. Darin verwendet er eine Durchfluss­zelle mit einem dünnen Membran-Fenster. Die für Röntgenlicht durchlässige Membran trennt die gelösten Proteine von der Kammer mit dem Vakuum. Dadurch wird verhindert, dass die flüssige Probe in die Kammer gelangt und dadurch das Vakuum zusammenbricht. Indem man im Durchfluss ständig frische Probe zuführt, können Strahlenschäden durch die Röntgenstrahlung vermieden werden. Mit der Experimentierkammer ­– Liquidrom genannt ‑ hat Emad Aziz in einer früheren Arbeit bereits nachgewiesen, dass das aktive Zentrum des Methämoglobins, die Häm-Gruppe­, in natürlicher Umgebung eine deutlich andere elektronische Struktur hat als in der kristallisierten Form. Dies war die weltweit erste spektroskopische Untersuchung mit weicher Röntgenstrahlung an einem Protein in seiner natürlichen Umgebung, veröffentlicht im vergangenen Jahr in den Physical Review Letters (http://prl.aps.org/pdf/PRL/v102/i6/e068103).

Auch die Katalase verfügt über eine derartige Häm-Gruppe, die als aktives Zentrum wirkt. Emad Aziz und Kathrin Lange haben jedoch festgestellt, dass sich die elektronische Struktur der aktiven Zentren bei den beiden Enzymen unterscheidet. Im Methämoglobin liegt das zentrale Eisenion in der Oxidationsstufe +3 vor, das heißt, es ist dreifach positiv geladen. In der Katalase beobachtet man dagegen einen partiellen +4-Charakter. Dadurch ist das Ion sehr viel reaktiver. Zur Bedeutung dieser Erkenntnis sagt Kathrin Lange: „Dass wir die Ursache der hohen enzymatischen Aktivität der Katalase nun verstehen, ist ein enormer Fortschritt. Damit werden wir in Zukunft derartige Systeme steuern oder nachahmen können.“

Außerdem zeigt die Arbeit eindrucksvoll, dass das von Aziz konstruierte Liquidrom eine einzigartige Möglichkeit bietet, physiologische Prozesse mithilfe von Synchrotronstrahlung zu untersuchen. Der 31-jährige Leiter einer Nachwuchsgruppe plant bereits die nächsten Experimente, in denen er Proteine mit verschiedenen Liganden und während ihrer enzymatischen Aktivität untersuchen will.


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.