Kristallisationspunkt für Nachwuchswissenschaftler

Workshop zur synchrotron-basierten biologischen Strukturforschung am HZB in Adlershof

Workshop zur synchrotron-basierten biologischen Strukturforschung am HZB in Adlershof„Diffraction Data Collection Using Synchrotron Radiation“ heißt der internationale Workshop, der zur Ausbildung von jungen Strukturforschern an Großgeräten vom 13. bis 15. August am Elektronenspeicherring BESSY II stattfand. 20 Nachwuchswissenschaftler aus sieben europäischen Ländern nahmen an der Veranstaltung teil. Vertreten waren Deutschland, Österreich, Schweiz, Niederlande, Belgien, Tschechien sowie Dänemark.

Dr. Uwe Müller (HZB) und Dr. Manfred Weiss, (EMBL, European Molecular Biology Laboratory) organisierten ein abwechslungsreiches, praxisnahes Programm um die synchrotron-basierten Methoden der biologischen Strukturforschung an die interessierten Doktoranden und jungen Postdocs weiter zu vermitteln.

Sieben namhafte Wissenschaftler ihres Fachgebietes waren als Tutoren geladen. Neben neun Einführungsvorträgen zum Thema, standen den Jungwissenschaftlern bei BESSY II die Beamlines 14.1 und 14.2 (MX und PX) zwei Tage lang für fünf kristallographische Experimente unter optimaler Betreuung zur Verfügung. Die Ergebnisse wurden im eigens für diese Veranstaltung errichteten Rechnerpool ausgewertet und anschließend präsentiert. Bei der Posterausstellung der Teilnehmer gab es zwei wertvolle wissenschaftliche Fachbücher als Prämie zu gewinnen.

Die Resonanz war durchweg positiv. Petr Pachl, Teilnehmerin aus Tschechien: “the last days were filled with experienced advices and friendly atmosphere".

Die synchrotron-basierte biologische Strukturforschung hat im letzten Jahrzehnt kontinuierlich an Bedeutung gewonnen. Zurzeit beträgt der Anteil in der Proteinstrukturdatenbank (www.rcsb.org) gespeicherten „Synchrotron-Daten“ etwa 80%. Somit werden praktische Erfahrungen zu den Methoden an Großgeräten immer wichtiger. „Die Nachfrage bei den jungen Strukturforschern sei entsprechend groß: „Der Kurs war 2-fach überbucht“ berichtet Dr. Uwe Müller vom HZB.

Ausgerichtet wurde der Workshop, vom AK1 (Arbeitskreis biologische Strukturen) der Deutschen Gesellschaft für Kristallographie,organisiert vom Helmholtz-Zentrum Berlin und dem EMBL-Hamburg.

Nähere Informationen finden Sie hier

Sahe

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.