Hou, K.; Börgel, J.; Jiang, H.Z. H.; SantaLucia, D.J.; Kwon, H.; Zhuang, H.; Chakarawet, K.; Rohde, R.C.; Taylor, J.W.; Dun, C.; Paley, M.V.; Turkiewicz, A.B.; Park, J.G.; Mao, H.; Zhu, Z.; Alp, E. E.; Zhao, J.; Hu, M.Y.; Lavina, B.; Peredkov, S.; Lv, X.; Oktawiec, J.; Meihaus, K.R.; Pantazis, D.A.; Vandone, M.; Colombo, V.; Bill, E.; Urban, J.J.; Britt, R. D.; Grandjean, F.; Long, G.J.; DeBeer, S.; Neese, F.; Reimer, J.A.; Long, J.R.: Reactive high-spin iron(IV)-oxo sites through dioxygen activation in a metal–organic framework. Science 382 (2023), p. 547–553
10.1126/science.add7417
Open Access Version (externer Anbieter)
Abstract:
In nature, nonheme iron enzymes use dioxygen to generate high-spin iron(IV)=O species for a variety of oxygenation reactions. Although synthetic chemists have long sought to mimic this reactivity, the enzyme-like activation of O2 to form high-spin iron(IV)=O species remains an unrealized goal. Here, we report a metal–organic framework featuring iron(II) sites with a local structure similar to that in α-ketoglutarate-dependent dioxygenases. The framework reacts with O2 at low temperatures to form high-spin iron(IV)=O species that are characterized using in situ diffuse reflectance infrared Fourier transform, in situ and variable-field Mössbauer, Fe Kβ x-ray emission, and nuclear resonance vibrational spectroscopies. In the presence of O2, the framework is competent for catalytic oxygenation of cyclohexane and the stoichiometric conversion of ethane to ethanol.