• Talapatra, A.; Qin, H.; Schulz, F.; Yao, L.; Flajsman, L.; Weigand, M.; Wintz, S.; van Dijken, S.: Imaging of short-wavelength spin waves in a nanometer-thick YIG/Co bilayer. Applied Physics Letters 122 (2023), p. 202404/1-6

10.1063/5.0149583
Open Access Version

Abstract:
We report the imaging of short-wavelength spin waves in a continuous nanometer-thick YIG film with a Co stripe patterned on top. Dynamic dipolar coupling between the YIG film and the Co stripe lowers the spin-wave wavelength when spin waves enter the YIG/Co bilayer region from the bare YIG film, causing partial reflection at the YIG/Co edge. We use time-resolved scanning transmission x-ray microscopy to image the mode conversion process down to a wavelength of 280 nm and extract the spin-wave dispersion, decay length, and magnetic damping in the YIG/Co bilayer. We also analyze spin-wave reflection from the YIG/Co edge and its dependence on the wavelength of incoming and transmitted spin waves.