• Riha, C.; Düzel, B.; Graser, K.; Chiatti, O.; Golias, E.; Sánchez-Barriga, J.; Rader, O.; Tereshchenko, O.E.; Fischer, S.F.: Electrical Transport Properties of Vanadium-Doped Bi2Te2.4Se0.6. Physica Status Solidi B 258 (2021), p. 2000088/1-6

10.1002/pssb.202000088
Open Access Version

Abstract:
Vanadium-doped Bi(2-x)Te(2.4)Se(0.6)single crystals, withx = 0.015 and 0.03, are grown by the Bridgman method. Bandstructure characterization by angle-resolved photoemission spectroscopy (ARPES) measurements shows gapless topological surface states for both vanadium concentrations. The Van-der-Pauw resistivity, the Hall charge carrier density, and the mobility in the temperature range from 0.3 to 300 K are strongly dependent on vanadium concentration, with carrier densities as low as 1.5 x 10(16) cm(-3)and mobilities as high as 570 cm(2) V(-1)s(-1). As expected for transport in gapless topological surface states, the resistivity, carrier density, and mobility are constant below 10 K. The magnetoresistance shows weak antilocalization for both vanadium concentrations in the same temperature range. The weak antilocalization is analyzed with the Hikami-Larkin-Nagaoka model, which yields phase-coherence lengths of up to 250 nm forx = 0.015.