Georg-Forster-Forschungsstipendiat untersucht Photokatalysatoren

Dr. Moses Alfred Oladele untersucht in einem gemeinsamen Projekt mit der Gruppe von Dr. Matt Mayer, HZB, und Prof. Andreas Taubert, Universit&auml;t Potsdam, die photokatalytische Umwandlung von CO<sub>2</sub>. Der Chemiker wird mit einem Georg-Forster-Forschungsstipendium der Alexander von Humboldt-Stiftung gef&ouml;rdert.

Dr. Moses Alfred Oladele untersucht in einem gemeinsamen Projekt mit der Gruppe von Dr. Matt Mayer, HZB, und Prof. Andreas Taubert, Universität Potsdam, die photokatalytische Umwandlung von CO2. Der Chemiker wird mit einem Georg-Forster-Forschungsstipendium der Alexander von Humboldt-Stiftung gefördert. © HZB

Dr. Moses Alfred Oladele arbeitet in einem gemeinsamen Projekt mit der Gruppe von Dr. Matt Mayer, HZB, und Prof. Andreas Taubert, Universität Potsdam, an innovativen Photokatalysatoren zur Umwandlung von CO2 mit Licht. Der Chemiker von der Redeemer‘s University in Nigeria, kam mit einem Georg-Forster-Forschungsstipendium der Alexander von Humboldt-Stiftung nach Berlin und wird zwei Jahre am HZB forschen.

Dr. Moses Alfred Oladele studierte Industriechemie, an der Adekunle Ajasin University in Akungba-Akoko (BSc) und für den Master-Abschluss an der Redeemer's University in Ede, Osun State, Nigeria, wo er 2021 auch promovierte. Seitdem arbeitet er als Dozent an der Redeemer's University und forscht am African Centre for Environmental and Water Research (ACE WATER). Dabei untersuchte er kostengünstige Materialien für die Sanierung von Gewässern, die mit Schadstoffen belastet sind, oder entwickelte Verfahren für das Umweltmonitoring im Südwesten Nigerias.

In der Gruppe von Matt Mayer forscht er an innovativen und kostengünstigen Katalysatormaterialien, die durch Sonnenlicht aktiviert werden können. Mit Hilfe solcher Katalysatoren kann CO2 in wertvolle Chemikalien umgewandelt werden, mit einem Netto-CO2-Fußabdruck von Null.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.