Mesoporöses Silizium: Halbleiter mit neuen Talenten

In mesoporösem Silizium wird der Ladungstransport von Elektronen in ausgedehnten wellenartigen Zuständen (blau) dominiert.

In mesoporösem Silizium wird der Ladungstransport von Elektronen in ausgedehnten wellenartigen Zuständen (blau) dominiert. © M. Künsting / HZB

Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.

Mesoporöses Silizium ist kristallines Silizium mit ungeordneten nanometergroßen Poren. Das Material besitzt eine riesige innere Oberfläche und ist darüber hinaus biokompatibel. Daraus ergeben sich vielfältige Anwendungsoptionen, von Biosensoren bis zu Batterieanoden und Kondensatoren. Außerdem besitzt das Material eine außergewöhnlich geringe Wärmeleitfähigkeit, was für thermische Isolationsanwendungen interessant ist.

Was dominiert den Transport?

Obwohl mesoporöses Silizium bereits seit Jahrzehnten bekannt ist, fehlte bisher ein fundamentales Verständnis des Transports von Ladungsträgern und der möglichen Beteiligung von Gitterschwingungen (Phononen) am Ladungstransport in diesem Material. „Die Transporteigenschaften und -prozesse genau zu verstehen, ist aber eine Voraussetzung, um das Material gezielt weiter zu entwickeln“, sagt Privatdozent Dr. Klaus Habicht, der am HZB die Abteilung Dynamik und Transport in Quantenmaterialien (QM-ADT) leitet.

Diese Analyse haben Habicht und sein Team nun vorgelegt. Dafür synthetisierten sie eine Reihe von Silizium-Nanostrukturen mit einer am HZB optimierten Ätztechnik und ermittelten die temperaturabhängige elektrische Leitfähigkeit und Thermokraft.

Wellenartige Elektronenzustände

„Durch die Analyse der Messdaten konnten wir eindeutig den grundlegenden Prozess beim Ladungstransport identifizieren“, sagt Dr. Tommy Hofmann, Erstautor der Studie. Die wesentliche Erkenntnis: „Nicht durch Unordnung lokalisierte Elektronen, die von einem lokalisierten Zustand zum nächsten hüpfen dominieren den Ladungstransport sondern solche in ausgedehnten, wellen-artigen Zuständen.“ Dabei sinkt die Leitfähigkeit mit steigender Unordnung. Die nötige Aktivierungsenergie, um Ladungsträger über eine von der Unordnung abhängige „Mobilitätskante“ zu bringen, steigt.

Gitterschwingungen spielen keine Rolle

Anders als bei einem Hüpfprozess, spielen Gitterschwingungen keine Rolle im Ladungstransport. Dies zeigten insbesondere Messungen des Seebeck-Effekts, bei dem die elektrische Spannung ermittelt wird, die entsteht, wenn die Probe einer Temperaturdifferenz entlang einer definierten Richtung ausgesetzt wird.

„Damit liefern wir erstmals eine belastbare und neuartige Erklärung für den mikroskopischen Ladungsträgertransport in ungeordnetem, nanostrukturiertem Silizium“, erklärt Dr. Tommy Hofmann.

Mesoporöses Silizium als Dämmung für Qbits

Diese Ergebnisse sind durchaus praxisrelevant, denn mesoporöses Silizium könnte für Qubits auf Silizium-Basis ideal sein. Diese Qubits arbeiten im Tieftemperaturbereich, typischerweise unter 1 Kelvin, und benötigen eine sehr gute thermische Isolation, um nicht Wärme aus der Umgebung aufzunehmen und die in Qubits gespeicherte Information auszulöschen. „Mit einem bildhaften Vergleich könnte man das mesoporöse Silizum als eine Art Dämmschaum betrachten, wie beim Hausbau“, sagt Habicht.

Unordnung lässt sich nutzen

Auch für Halbleiter-Anwendungen, die bisher an der hohen Wärmeleitfähigkeit von kristallinem oder polykristallinem Silizium scheitern, bietet sich möglicherweise der Einsatz von mesoporösem Silizium an. „Die Unordnung lässt sich gezielt nutzen“, betont Habicht. Halbleiter mit rein stochastisch verteilten Mesoporen wären damit eine neue spannende Materialklasse für technische Anwendungen von der Photovoltaik,  Wärmemanagement, Nanoelektronik bis hin zu Qubits für Quantencomputer.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Durchbruch: Erster Elektronenstrahl im SEALab bringt Beschleunigerphysik voran
    Nachricht
    03.04.2025
    Durchbruch: Erster Elektronenstrahl im SEALab bringt Beschleunigerphysik voran
    Weltweit zum ersten Mal hat das SEALab-Team am HZB in einem supraleitenden Hochfrequenzbeschleuniger (SRF Photoinjektor) einen Elektronenstrahl aus einer Multi-Alkali-Photokathode (Na-K-Sb) erzeugt und auf relativistische Energien beschleunigt. Dies ist ein echter Durchbruch und eröffnet neue Optionen für die Beschleunigerphysik.

     

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.