Katalysatorplattform verbessert das Verständnis von arbeitenden Katalysatoren

© FHI

Eine neuartige Katalysatorplattform, bekannt als Laterally Condensed Catalysts (LCC), wurde entwickelt, um das Design und die Analyse der funktionalen Schnittstelle zu ermöglichen, die die aktive Masse mit ihrer Unterstützung verbindet. Diese Schnittstelle beeinflusst nicht nur die chemischen Eigenschaften der reaktiven Schnittstelle, sondern kontrolliert auch deren Stabilität und damit die Nachhaltigkeit der katalytischen Materialien.

Unbeschränkte Kombinationen in der Zusammensetzung zwischen aktiver Phase und Unterstützung ermöglichen beispielsweise den direkten Energietransfer zur reaktiven Schnittstelle in der Elektrokatalyse oder elektrischen Heizung. Die physikalische Synthesemethodik im Rahmen des FHI-HZB CatLab-Projekts, die aus der Solarzellentechnologie stammt, ermöglicht den Zugang zu präzisen und homogenen Strukturen und Chemie. Dies erleichtert das mechanistische Verständnis von arbeitenden Katalysatoren und deren anschließende Optimierung durch die Untersuchung reaktiver und funktionaler Schnittstellen mittels Operando-Spektroskopie. Die hier untersuchten Dünnschichtkatalysatoren wurden mit dem Ziel synthetisiert, die Schnittstellenstruktur von Leistungskatalysatoren zu entwerfen und die Materiallücke zwischen Modell- und realen Pulverkatalysatoren zu schließen, während der Einsatz von Edelmetallen minimiert wird. Seine einzigartige flache und dicht gepackte Struktur (LCC) ermöglicht es, eine homogene hohe Dichte an oberflächenaktiven Stellen zu erreichen, wodurch der Gehalt an Material im "Bulk" oder der Unterfläche der aktiven Katalysatoren minimiert wird, was sich positiv auf die Selektivität der katalysierten Reaktion auswirkt.

Diese Bemühungen werden in einer Studie beschrieben, die in Nature Communications veröffentlicht wurde, mit dem Titel "Rationally Designed Laterally-Condensed-Catalysts Deliver Robust Activity and Selectivity for Ethylene Production in Acetylene Hydrogenation." Die Studie ist Teil des CatLab-Projekts, einer Zusammenarbeit, die prominent das Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI), das Helmholtz-Zentrum Berlin für Materialien und Energie und das Max-Planck-Institut für chemische Energiekonversion umfasst. Das CatLab-Projekt wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.

Lesen Sie die ausführliche Mitteilung auf der Webseite des FHI >

FHI

  • Link kopieren

Das könnte Sie auch interessieren

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.
  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.