BESSY II: Heterostrukturen für die Spintronik

Symbolische Illustration einer Graphenschicht auf einem Mikrochip. Graphen könnte in Kombination mit einer Schwermetall-Dünnschicht und ferromagnetischen Monolagen spintronische Bauelemente ermöglichen.

Symbolische Illustration einer Graphenschicht auf einem Mikrochip. Graphen könnte in Kombination mit einer Schwermetall-Dünnschicht und ferromagnetischen Monolagen spintronische Bauelemente ermöglichen. © Dall-E/arö

Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.

 

Die Spintronik nutzt die Spins von Elektronen, um logische Operationen durchzuführen oder Informationen zu speichern. Spintronische Bauelemente könnten im Idealfall schneller und energieeffizienter arbeiten als die gängigen Halbleiter-Bauelemente. Allerdings ist es noch immer schwierig, Spin-Strukturen in Materialien gezielt zu erzeugen und zu manipulieren.

Graphen für die Spintronik

Als interessanter Kandidat für spintronische Anwendungen gilt Graphen, eine zweidimensional vernetzte Bienenwabenstruktur aus Kohlenstoffatomen. Graphen wird üblicherweise auf eine Dünnschicht aus einem Schwermetall aufgetragen. An der Grenzschicht zwischen Graphen und Schwermetall entwickelt sich eine starke Spin-Bahn-Kopplung, was unterschiedliche Quanteneffekte ermöglicht, darunter auch eine Spin-Bahn-Aufspaltung der Energieniveaus (Rashba-Effekt) und eine „Verkantung“ bei der Ausrichtung der Spins (Dzyaloshinskii-Moriya-Wechselwirkung). Speziell dieser letzte Effekt wird benötigt, um wirbelartige Spin-Strukturen zu stabilisieren, so genannte Skyrmionen, die für die Spintronik besonders geeignet sind.

Plus Monolagen aus Kobalt

Nun aber hat ein Spanisch-Deutsches Team gezeigt, dass sich diese Effekte deutlich verstärken, wenn zwischen Graphen und Schwermetall-Substrat (hier: Iridium) noch einige Monolagen aus dem ferromagnetischen Element Kobalt eingefügt werden. Die Proben wurden auf isolierenden Substraten gezüchtet, was eine notwendige Voraussetzung für die Implementierung multifunktionaler Spintronik-Bauelemente ist, die diese Effekte nutzen.

Wechselwirkung der Quanteneffekte beobachtet

„Wir haben an BESSY II die elektronischen Spektren an den Grenzflächen zwischen Graphen, Kobalt und Iridium genau analysiert“, sagt Dr. Jaime Sanchez-Barriga, Physiker am HZB. Die wichtigste Erkenntnis: Wider Erwarten wechselwirkt das Graphen nicht nur mit dem Kobalt, sondern auch durch das Kobalt hindurch mit dem Iridium. „Die Wechselwirkung zwischen Graphen und dem Schwermetall Iridium wird durch die ferromagnetische Kobalt-Schicht vermittelt“, erklärt Sánchez-Barriga. Dabei verstärkt die ferromagnetische Schicht die Aufspaltung der Energieniveaus. „Wir können den Effekt der Spin-Verkantung durch die Anzahl der Kobalt-Monolagen beeinflussen, optimal sind drei Monolagen“, sagt Sánchez-Barriga.

Dieses Ergebnis wird nicht nur durch die Messergebnisse gestützt, sondern auch durch neue Berechnungen im Rahmen der Dichtefunktionaltheorie, die am Forschungszentrum Jülich durchgeführt wurden. Dass sich beide Quanteneffekte gegenseitig beeinflussen und verstärken, ist neu und unerwartet.

SPIN-ARPES an BESSY II

„Diese neuen Erkenntnisse konnten wir nur deshalb gewinnen, weil an BESSY II extrem hochauflösende und empfindliche Instrumente zur Verfügung stehen, um Photoemissionsspektren mit Spin-Auflösung zu messen (SPIN-ARPES)“, betont Prof. Oliver Rader, der die Abteilung Spin und Topologie in Quantenmaterialien am HZB leitet. „Dies führt zu der glücklichen Situation, dass wir die vermutete Ursache für die Verkantung der Spins, d. h. die Spin-Bahn-Aufspaltung vom Rashba-Typ, sehr genau bestimmen können, wahrscheinlich sogar genauer als die Spin-Verkantung selbst“. Instrumente mit diesen Möglichkeiten gibt es weltweit nur an sehr wenigen Einrichtungen.

Die Ergebnisse zeigen, dass Heterostrukturen auf Basis von Graphen ein großes Potential für die nächste Generation von spintronischen Bauelementen besitzen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.