Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen

Das Kompositbild (aus den Daten der micro-XRF-Analyse) zeigt die Verteilung der Elemente Kalzium (Ca, weiß: Zahn) Ytterbium (Yb, magenta: Füllung) und Zink (Zn, rot: Sealer) in einem behandelten menschlichen Zahn. Dabei lässt sich erkennen, dass Zink aus dem Sealer-Material in den Zahn diffundiert.

Das Kompositbild (aus den Daten der micro-XRF-Analyse) zeigt die Verteilung der Elemente Kalzium (Ca, weiß: Zahn) Ytterbium (Yb, magenta: Füllung) und Zink (Zn, rot: Sealer) in einem behandelten menschlichen Zahn. Dabei lässt sich erkennen, dass Zink aus dem Sealer-Material in den Zahn diffundiert. © Leona Bauer (TU Berlin/HZB)

Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.

„Wir können nun genauere Messungen durchführen“, sagt Ioanna Mantouvalou: „Die Absorptionskorrektur mit Mikro-CT und XAS berücksichtigt, wie stark verschiedene Materialien Röntgenstrahlen absorbieren.“ Möglich geworden ist dies durch eine Kombination von Laborinfrastrukturen der BAM (Bundesanstalt für Materialprüfung und -forschung) und des HZB Labors SyncLab in Kombination mit der Synchrotronstrahlungsquelle BESSY II. BESSY II stellte für die Versuche durchstimmbare Röntgenstrahlen in einem weiten Energiebereich (200 eV bis 32 keV) zur Verfügung, die für die detaillierte Analyse der Zusammensetzung notwendig sind. Die Mikro-CT und konfokalen micro-XRF Untersuchungen waren dann mit Laboraufbauten, die Röntgenröhren als Quellen nutzen, möglich.

Eines der untersuchten Materialien ist Dentin – ein mineralisiertes Gewebe, das den größten Teil des Zahnes ausmacht. Dentin liegt unter dem Zahnschmelz und spielt eine wichtige Rolle bei der Übertragung von Reizen wie Kälte und Wärme. Die Ergebnisse der Analyse sind für die Zahnheilkunde wichtig. Denn bei Zahnfüllungen können Elemente aus dem Füllmaterial in das Dentin hineindiffundieren. „Unsere Ergebnisse ermöglichen detaillierte Studien von solchen Diffusionsprozessen“, so Leona Bauer, Doktorandin am HZB und an der TU Berlin und Erst-Autorin der Studie. Sie seien wichtig, um die Haltbarkeit und Verträglichkeit von Zahnfüllungen zu verbessern und das Risiko von Sekundärkaries und anderen Zahnproblemen zu verringern.

Neben der Untersuchung von Materialien für die Zahnheilkunde bietet die Methode Anwendungsmöglichkeiten in anderen Bereichen, in denen präzise 3D-Elementverteilungen erforderlich sind. Dazu gehören die Analyse von biologischen Geweben, die Untersuchung von Katalysatormaterialien und die Erforschung von Materialien in der Umweltwissenschaft. Die Vielseitigkeit der Messmethode könnte somit positiven Einfluss auf verschiedene Forschungsfelder haben.

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.