Dynamische Messungen in Flüssigkeiten jetzt auch im Labor

Die gestrichelten Linien markieren das erste dünne Flüssigkeits-‚Blatt‘, in dem Moleküle gelöst sind. Im oberen Teil befinden sich zwei Düsen, im unteren Teil ein Auffangbehälter (Bild links). Das Bild in der Mitte zeigt die Transmission des Flachstrahls. Rechts ist das Spektrum der Probe auf dem CCD-Detektor zu sehen.

Die gestrichelten Linien markieren das erste dünne Flüssigkeits-‚Blatt‘, in dem Moleküle gelöst sind. Im oberen Teil befinden sich zwei Düsen, im unteren Teil ein Auffangbehälter (Bild links). Das Bild in der Mitte zeigt die Transmission des Flachstrahls. Rechts ist das Spektrum der Probe auf dem CCD-Detektor zu sehen. © HZB

Ein Team aus Berliner Forscher*innen hat ein Laborspektrometer entwickelt, um chemische Prozesse in Lösung zu analysieren – und das mit 500 ps Zeitauflösung. Dies ist nicht nur für die Forschung an molekularen Prozessen in der Biologie interessant, sondern auch für die Entwicklung von neuartigen Katalysatormaterialien. Bisher war dafür allerdings meist Synchrotronstrahlung erforderlich, wie sie nur an großen, modernen Röntgenquellen wie BESSY II zur Verfügung steht. Nun funktioniert das Verfahren mit einer Plasmalichtquelle im Labormaßstab.

„Durch unseren Laboraufbau wird diese Messmethode nun für eine breitere Community zugänglich“, sagt HZB-Physikerin Dr. Ioanna Mantouvalou, die die Entwicklung zusammen mit Partnern aus der Technischen Universität Berlin, dem Max-Born-Institut, der Physikalisch-Technischen Bundesanstalt sowie der Firma Nano Optics Berlin vorangetrieben hatte. „Die Labormessungen können in einem ersten Schritt auch genauer umgrenzen, wo weitere Analysen an Synchrotronquellen sinnvoll und vielversprechend sind. Dadurch werden knappe Ressourcen besser genutzt“, sagt Mantouvalou.

Zeitaufgelöste Röntgenspektroskopie im „weichen“ Energiebereich bietet Zugang zu Eigenschaften von organischen Materialien und ist damit ideal, um dynamische Veränderungen in der Elektronenstruktur einzelner Elemente in ungeordneten Systemen zu untersuchen. Messungen von flüssigen Lösungen, in denen diese Moleküle oder Komplexe gelöst sind, sind jedoch besonders anspruchsvoll. Sie erfordern einen hohen Photonenfluss und extrem geringes Rauschen. Daher sind diese Experimente meist auf Großgeräte wie moderne Synchrotronlichtquellen beschränkt.

Das neue Labormessgerät nutzt dagegen Licht eines Plasmas, welches durch die Interaktion von einem intensiven Laserpuls mit Metall entsteht. Das neue Instrument ermöglicht Zeitauflösungen von 500 Pikosekunden. Die neu entwickelte Detektionsmethode ermöglicht eine sehr „stabile“ Detektion. „Dies konnten wir in unserer Studie an zwei Beispielen in wässriger Lösung demonstrieren. Wir haben dafür die Metall-Komplexverbindungen [Ni(CN)4]2- und [Fe(bpy)3]2+ untersucht“, sagt Richard Gnewkow, Erstautor und Doktorand im Team von Mantouvalou.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.  

  • Katalysatorplattform verbessert das Verständnis von arbeitenden Katalysatoren
    Science Highlight
    11.12.2024
    Katalysatorplattform verbessert das Verständnis von arbeitenden Katalysatoren
    Eine neuartige Katalysatorplattform, bekannt als Laterally Condensed Catalysts (LCC), wurde entwickelt, um das Design und die Analyse der funktionalen Schnittstelle zu ermöglichen, die die aktive Phase mit ihrer Unterstützung verbindet. Diese Schnittstelle beeinflusst nicht nur die chemischen Eigenschaften der reaktiven Schnittstelle, sondern kontrolliert auch deren Stabilität und damit die Nachhaltigkeit der katalytischen Materialien. Die Entwicklung wurde wesentlich durch die Anwendung von operando-Spektroskopie am Synchrotron BESSY II unterstützt, die es ermöglichte, die dynamischen Prozesse und Strukturen unter Reaktionsbedingungen zu beobachten und zu verstehen.