Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur

Das Team um Sergio Valencia untersuchte die Proben mit Photo-Emissions-Elektronenmikroskopie unter Verwendung von XMCD an BESSY II. Die Bilder zeigen die radial ausgerichten Spintexturen in einer runden und einer quadratischen Probe, die aus einem ferromagnetischen Material auf einer supraleitenden YBCO-Insel besteht. Der weiße Pfeil zeigt den einfallenden Röntgenstrahl.

Das Team um Sergio Valencia untersuchte die Proben mit Photo-Emissions-Elektronenmikroskopie unter Verwendung von XMCD an BESSY II. Die Bilder zeigen die radial ausgerichten Spintexturen in einer runden und einer quadratischen Probe, die aus einem ferromagnetischen Material auf einer supraleitenden YBCO-Insel besteht. Der weiße Pfeil zeigt den einfallenden Röntgenstrahl. © HZB

Ein Team am HZB hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen.

In einigen Materialien bilden Spins komplexe magnetische Strukturen mit Durchmessern im Bereich von Nano- oder Mikrometern, in denen sich die Magnetisierungsrichtung verdreht und krümmt. Beispiele für solche Strukturen sind magnetische Blasen, Skyrmionen, Wirbel und radial ausgerichtete Vortizes.

Spintronik: Rechnen mit Spins

Unter dem Schlagwort Spintronik wird daran geforscht, solche winzigen magnetischen Strukturen zu nutzen, um Daten zu speichern oder logische Operationen durchzuführen. Der Vorteil: verglichen mit den mikroelektronischen Komponenten ist der Stromverbrauch von spintronischen Bauelementen extrem gering. Allerdings gelingt die Erzeugung und Manipulation von Skyrmionen nur in wenigen Materialien und unter ganz besonderen Umständen.

Der neue Ansatz

Eine internationale Kollaboration unter der Leitung des HZB-Physikers Dr. Sergio Valencia hat nun einen neuen Ansatz untersucht, mit dem sich komplexe Spin-Texturen in einer Vielzahl von Verbindungen erzeugen und stabilisieren lassen. Dabei handelt es sich um Radialwirbel, in denen die Magnetisierung zum Zentrum der Struktur hin oder von ihm weg gerichtet ist. Diese Art der magnetischen Konfiguration ist sehr instabil, da das System eine einfachere Konfiguration bevorzugt, die weniger Energie benötigt. Im neuen Ansatz können diese radialen Wirbel mit Hilfe von supraleitenden Strukturen erzeugt werden, wobei Oberflächendefekte für die Stabilisierung sorgen.

Ferromagnet auf YBCO-Insel

Die Proben bestehen aus mikrometergroßen Inseln aus dem Hochtemperatursupraleiter YBCO, auf die eine ferromagnetische Verbindung aufgebracht wird. Das Abkühlen der Probe auf unter 92 Kelvin (-181 °C) bringt YBCO in den supraleitenden Zustand. In diesem Zustand wird ein äußeres Magnetfeld angelegt und sofort wieder entfernt. Dieser Prozess ermöglicht das Eindringen und festpinnen (pinning) von magnetischen Flüssen, die wiederum selbst ein Magnetfeld erzeugen. Dieses magnetische Streufeld sorgt in der ferromagnetischen Schicht für die Ausbildung von radialen Wirbeln.

Nützliche Defekte

Wird die Temperatur im Anschluss erhöht, geht YBCO vom supraleitenden wieder in den normalen Zustand über. Damit verschwindet das Streufeld und damit auch der entsprechende magnetische Radialwirbel. Das Team um Valencia beobachtete jedoch, dass Oberflächendefekte dies verhindern: Radialwirbel bleiben in diesem Fall erhalten, bis hin zu Raumtemperatur.

Ähnlich wie Skyrmionen

Kleinere Wirbel hatten einen Durchmesser von etwa 2 Mikrometern und sind damit etwa zehnmal so groß wie typische Skyrmionen. Das Team untersuchte Proben mit kreisförmigen und quadratischen Geometrien und stellte fest, dass kreisförmige Geometrien die Stabilität der eingeprägten magnetischen Radialwirbel erhöhen.

"Wir nutzen das von den supraleitenden Strukturen erzeugte Magnetfeld, um den darauf platzierten Ferromagneten bestimmte magnetische Domänen aufzuprägen. Dabei haben wir entdeckt, wie Oberflächendefekte diese Spin-Texturen stabilisieren. Die magnetischen Strukturen ähneln denen von Skyrmionen und sind für spintronische Anwendungen interessant", erklärt Valencia.

Dies ist ein neuartiger Weg, um solche Strukturen zu erzeugen und zu stabilisieren, und er kann in einer Vielzahl von ferromagnetischen Materialien angewendet werden. "Das sind gute neue Aussichten für die weitere Entwicklung der supraleitenden Spintronik", sagt Valencia.

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.