Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur

Das Team um Sergio Valencia untersuchte die Proben mit Photo-Emissions-Elektronenmikroskopie unter Verwendung von XMCD an BESSY II. Die Bilder zeigen die radial ausgerichten Spintexturen in einer runden und einer quadratischen Probe, die aus einem ferromagnetischen Material auf einer supraleitenden YBCO-Insel besteht. Der weiße Pfeil zeigt den einfallenden Röntgenstrahl.

Das Team um Sergio Valencia untersuchte die Proben mit Photo-Emissions-Elektronenmikroskopie unter Verwendung von XMCD an BESSY II. Die Bilder zeigen die radial ausgerichten Spintexturen in einer runden und einer quadratischen Probe, die aus einem ferromagnetischen Material auf einer supraleitenden YBCO-Insel besteht. Der weiße Pfeil zeigt den einfallenden Röntgenstrahl. © HZB

Ein Team am HZB hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen.

In einigen Materialien bilden Spins komplexe magnetische Strukturen mit Durchmessern im Bereich von Nano- oder Mikrometern, in denen sich die Magnetisierungsrichtung verdreht und krümmt. Beispiele für solche Strukturen sind magnetische Blasen, Skyrmionen, Wirbel und radial ausgerichtete Vortizes.

Spintronik: Rechnen mit Spins

Unter dem Schlagwort Spintronik wird daran geforscht, solche winzigen magnetischen Strukturen zu nutzen, um Daten zu speichern oder logische Operationen durchzuführen. Der Vorteil: verglichen mit den mikroelektronischen Komponenten ist der Stromverbrauch von spintronischen Bauelementen extrem gering. Allerdings gelingt die Erzeugung und Manipulation von Skyrmionen nur in wenigen Materialien und unter ganz besonderen Umständen.

Der neue Ansatz

Eine internationale Kollaboration unter der Leitung des HZB-Physikers Dr. Sergio Valencia hat nun einen neuen Ansatz untersucht, mit dem sich komplexe Spin-Texturen in einer Vielzahl von Verbindungen erzeugen und stabilisieren lassen. Dabei handelt es sich um Radialwirbel, in denen die Magnetisierung zum Zentrum der Struktur hin oder von ihm weg gerichtet ist. Diese Art der magnetischen Konfiguration ist sehr instabil, da das System eine einfachere Konfiguration bevorzugt, die weniger Energie benötigt. Im neuen Ansatz können diese radialen Wirbel mit Hilfe von supraleitenden Strukturen erzeugt werden, wobei Oberflächendefekte für die Stabilisierung sorgen.

Ferromagnet auf YBCO-Insel

Die Proben bestehen aus mikrometergroßen Inseln aus dem Hochtemperatursupraleiter YBCO, auf die eine ferromagnetische Verbindung aufgebracht wird. Das Abkühlen der Probe auf unter 92 Kelvin (-181 °C) bringt YBCO in den supraleitenden Zustand. In diesem Zustand wird ein äußeres Magnetfeld angelegt und sofort wieder entfernt. Dieser Prozess ermöglicht das Eindringen und festpinnen (pinning) von magnetischen Flüssen, die wiederum selbst ein Magnetfeld erzeugen. Dieses magnetische Streufeld sorgt in der ferromagnetischen Schicht für die Ausbildung von radialen Wirbeln.

Nützliche Defekte

Wird die Temperatur im Anschluss erhöht, geht YBCO vom supraleitenden wieder in den normalen Zustand über. Damit verschwindet das Streufeld und damit auch der entsprechende magnetische Radialwirbel. Das Team um Valencia beobachtete jedoch, dass Oberflächendefekte dies verhindern: Radialwirbel bleiben in diesem Fall erhalten, bis hin zu Raumtemperatur.

Ähnlich wie Skyrmionen

Kleinere Wirbel hatten einen Durchmesser von etwa 2 Mikrometern und sind damit etwa zehnmal so groß wie typische Skyrmionen. Das Team untersuchte Proben mit kreisförmigen und quadratischen Geometrien und stellte fest, dass kreisförmige Geometrien die Stabilität der eingeprägten magnetischen Radialwirbel erhöhen.

"Wir nutzen das von den supraleitenden Strukturen erzeugte Magnetfeld, um den darauf platzierten Ferromagneten bestimmte magnetische Domänen aufzuprägen. Dabei haben wir entdeckt, wie Oberflächendefekte diese Spin-Texturen stabilisieren. Die magnetischen Strukturen ähneln denen von Skyrmionen und sind für spintronische Anwendungen interessant", erklärt Valencia.

Dies ist ein neuartiger Weg, um solche Strukturen zu erzeugen und zu stabilisieren, und er kann in einer Vielzahl von ferromagnetischen Materialien angewendet werden. "Das sind gute neue Aussichten für die weitere Entwicklung der supraleitenden Spintronik", sagt Valencia.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.