BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert

© stock.adobe.com

Die Abbildung zeigt die Alterungsprozesse in NMC/Graphit-Lithium-Ionen-Batterien beim konventionellen Laden (oberes Bild) und beim Laden mit gepulstem Strom (unteres Bild). Das gepulste Laden f&uuml;hrt zu deutlich weniger Rissen in den Graphit- und NMC-Partikeln. Au&szlig;erdem ist die Grenzfl&auml;che zwischen der festen Elektrode und dem fl&uuml;ssigen Elektrolyten (SEI) d&uuml;nner und hat eine andere Zusammensetzung.</p>
<p>&nbsp;

Die Abbildung zeigt die Alterungsprozesse in NMC/Graphit-Lithium-Ionen-Batterien beim konventionellen Laden (oberes Bild) und beim Laden mit gepulstem Strom (unteres Bild). Das gepulste Laden führt zu deutlich weniger Rissen in den Graphit- und NMC-Partikeln. Außerdem ist die Grenzfläche zwischen der festen Elektrode und dem flüssigen Elektrolyten (SEI) dünner und hat eine andere Zusammensetzung.

  © HZB/10.1002/aenm.202400190

Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.

Lithium-Ionen-Batterien sind leistungsstark und werden überall eingesetzt, von Elektrofahrzeugen bis zu elektronischen Geräten. Allerdings nimmt ihre Kapazität im Laufe von Hunderten von Ladezyklen allmählich ab. Die besten handelsüblichen Lithium-Ionen-Batterien mit Elektroden aus sogenanntem NMC532 (Summenformel: LiNi0.5Mn0.3Co0.2O2) und Graphit haben eine Lebensdauer von bis zu acht Jahren. Batterien werden in der Regel mit einem konstanten Stromfluss geladen. Aber ist das wirklich die günstigste Methode? Eine neue Studie aus der Arbeitsgruppe von Prof. Dr. Philipp Adelhelm am HZB und der Humboldt-Universität zu Berlin beantwortet diese Frage eindeutig mit Nein. Die Studie in der Fachzeitschrift Advanced Energy Materials analysiert den Einfluss des Ladeprotokolls auf die Lebensdauer der Batterie.

Alterungseffekte analysiert

Ein Teil der Batterietests wurde an der Universität Aalborg durchgeführt. Die Batterien wurden entweder konventionell mit Konstantstrom (CC) oder mit einem neuen Ladeprotokoll mit gepulstem Strom (PC) geladen. Post-mortem-Analysen zeigten nach mehreren Ladezyklen deutliche Unterschiede: Bei den CC-Proben war die Festelektrolyt-Grenzfläche (SEI) an der Anode deutlich dicker, was die Kapazität beeinträchtigte. Außerdem fand das Team mehr Risse in der Struktur der NMC532- und Graphitelektroden, was ebenfalls zum Kapazitätsverlust beitrug. Im Gegensatz dazu führte die PC-Ladung zu einer dünneren SEI-Grenzfläche und weniger strukturellen Veränderungen in den Elektrodenmaterialien.

Synchrotron-Experimente an BESSY II und PETRA III

HZB-Forscher Dr. Yaolin Xu untersuchte anschließend die Lithium-Ionen-Zellen an der Humboldt-Universität und an BESSY II mit Operando-Raman-Spektroskopie und Dilatometrie sowie Röntgenabsorptionsspektroskopie. Dadurch gelang es ihm, zu analysieren, was beim Laden mit unterschiedlichen Protokollen passiert. Ergänzende Experimente wurden am Synchrotron PETRA III durchgeführt. „Das Aufladen mit gepulstem Strom fördert die homogene Verteilung der Lithium-Ionen im Graphit. Dadurch verringert sich die mechanische Belastung und Rissbildung in den Graphitpartikeln, so dass die Graphitanode länger stabil bleibt", schließt er. Die gepulste Ladung unterdrückt auch strukturelle Veränderungen in den NMC532-Kathodenmaterialien und geht mit geringeren Variationen in den N-O-Bindungslängen zwischen Stickstoff- und Sauerstoffatomen einher.

Die Pulsstromfrequenz ist entscheidend

Dabei kommt es jedoch auf die Frequenz des gepulsten Stroms an: die Messreihe mit einem hochfrequent gepulstem Strom verlängerte die Lebensdauer der untersuchten kommerziellen Lithium-Ionen-Batterie am stärksten, bis zur Verdopplung der Zyklenlebensdauer (mit 80 % Kapazitätserhalt). Mitautorin Prof. Dr. Julia Kowal, Expertin für elektrische Energiespeichertechnik an der TU Berlin, betont: „Ein gutes Verständnis über den Einfluss von Pulsladung mit verschiedenen Frequenzen auf die SEI-Schicht wird sehr hilfreich sein für die Entwicklung von schonenderen Ladeverfahren.“

 

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.