Befruchtung unter dem Röntgenstrahl

© Joana C. Carvalho

Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.

Die Befruchtung bei Säugetieren beginnt, wenn sich ein Spermium an die Eihülle heftet: diese Hülle muss das Spermium durchdringen, um mit der Eizelle zu verschmelzen. Jetzt hat ein internationales Team die Struktur und Funktion des Proteins ZP2 im Detail entschlüsselt. ZP2 ist eine Komponente des Eihüllenfilaments, die eine Schlüsselrolle bei der Regulierung der Interaktion zwischen Ei- und Samenzelle bei der Befruchtung spielt.

"Es war bekannt, dass ZP2 gespalten wird, nachdem das erste Spermium in die Eizelle eingedrungen ist, und wir erklären, wie dieses Ereignis die Eihülle härter und undurchlässiger für andere Spermien macht", sagt Luca Jovine, Professor am Department of Biosciences and Nutrition, Karolinska Institutet, der die Studie leitete. "Dies verhindert Polyspermie - die Verschmelzung mehrerer Spermien mit einer einzigen Eizelle - was für den Embryo fatal ist“.

Einsatz von KI Alphafold

Die Forscher*innen kombinierten Röntgenkristallographie und Kryo-EM, um die 3D-Struktur der Eihüllenproteine zu untersuchen. Die Interaktion zwischen Spermien und Eiern, die Mutationen im ZP2-Protein tragen, wurde an Mäusen untersucht, während das KI-Programm AlphaFold verwendet wurde, um die Struktur der Eihülle beim Menschen vorherzusagen.

Die Studie wurde in Zusammenarbeit mit den Universitäten Osaka und Sophia in Japan und der Universität Pittsburgh in den USA durchgeführt, die Messdaten stammen aus Experimenten bei SciLifeLab und an den Röntgenquellen ESRF, DLS und BESSY II.

Karolinska Institutet

  • Link kopieren

Das könnte Sie auch interessieren

  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.
  • BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    Science Highlight
    20.02.2025
    BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    In einem kleinen Manganoxid-Cluster haben Teams von HZB und HU Berlin eine besonders spannende Verbindung entdeckt: Zwei Mangan-Zentren mit zwei stark unterschiedlichen Oxidationsstufen und hohem Spin. Dieser Komplex ist das einfachste Modell eines Katalysators, der als etwas größerer Cluster auch in der natürlichen Photosynthese vorkommt und dort die Bildung von molekularem Sauerstoff ermöglicht. Die Entdeckung gilt als wichtiger Schritt auf dem Weg zu einem vollständigen Verständnis der Photosynthese.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.