Fokussierte Ionenstrahlen: Ein Werkzeug für viele Zwecke

Mit fokussierten Ionenstrahlen lassen sich Materialien analysieren, strukturieren oder optimieren - dies ermöglicht eine große Bandbreite an Einsatzmöglichkeiten. Einen Überblick und eine Roadmap für künftige Entwicklungen vermittelt die Publikation aus dem Fit4Nano-Projekt.

Mit fokussierten Ionenstrahlen lassen sich Materialien analysieren, strukturieren oder optimieren - dies ermöglicht eine große Bandbreite an Einsatzmöglichkeiten. Einen Überblick und eine Roadmap für künftige Entwicklungen vermittelt die Publikation aus dem Fit4Nano-Projekt. © N. Klingner/HZDR, Katja Höflich/HZB

Materialien auf der Nanoskala bearbeiten, Prototypen für die Mikroelektronik fertigen oder biologische Proben analysieren: Die Bandbreite für den Einsatz von fein fokussierten Ionenstrahlen ist riesig. Einen Überblick über die vielfältigen Möglichkeiten und eine Roadmap für die Zukunft haben Expert*innen aus der EU-Kooperation FIT4NANO nun gemeinsam erarbeitet. Der Beitrag ist in Applied Physics Review publiziert und richtet sich an Studierende, Anwender*innen aus Industrie und Wissenschaft sowie die Forschungspolitik.


„Uns war klar, dass man fokussierte Ionenstrahlen sehr vielseitig einsetzen kann, und wir dachten zu Beginn des Projekts, dass wir schon einen guten Überblick hätten. Doch dann haben wir entdeckt, dass es noch weit mehr Anwendungen gibt, als uns bewusst war. In vielen Publikationen wird die Nutzung fokussierter Ionenstrahlen gar nicht explizit erwähnt, sondern findet sich im Methodenteil versteckt. Das war Detektivarbeit“, berichtet Dr. Katja Höflich, Physikerin am Ferdinand-Braun-Institut und am Helmholtz-Zentrum Berlin (HZB), die den umfangreichen Bericht koordiniert hat. „Insbesondere fanden wir Arbeiten aus den 1960er und 1970er Jahren, die damals ihrer Zeit voraus gewesen sind und zu Unrecht in der Versenkung verschwunden sind. Auch heute noch liefern sie wichtige Erkenntnisse.“

Der Bericht gibt einen Überblick über den aktuellen Stand rund um fein fokussierte Ionenstrahlen (Focused Ion Beam – FIB): Technologie, Anwendungen mit vielen Beispielen, die wichtigsten Geräteentwicklungen und Zukunftsperspektiven. „Wir wollten ein Nachschlagewerk bereitstellen, das für die akademische Forschung und die F&E-Abteilungen der Industrie nützlich ist, aber auch dem Forschungsmanagement hilft, sich in diesem Feld zu orientieren“, sagt Dr. Gregor Hlawacek, Gruppenleiter am Institut für Ionenstrahlphysik und Materialforschung des Helmholtz-Zentrums Dresden-Rossendorf (HZDR). Hlawacek leitet das Vorhaben FIT4NANO, ein EU-Projekt zu FIB-Technologien, in dem die Autor*innen des Berichts mitarbeiten.

Von der Grundlagenforschung bis zum fertigen Bauteil

FIB-Instrumente verwenden einen fokussierten Ionenstrahl mit typischerweise zwei bis 30 Kiloelektronenvolt (keV). Solch ein Ionenstrahl rastert mit seinem geringen Durchmesser im Nano- und Subnanometer-Bereich die Probe ab und kann deren Oberfläche nanometergenau verändern. Das macht ihn zu einem universellen Werkzeug für Analysen, maskenlose lokale Materialveränderungen oder schnelles Prototyping von mikroelektronischen Bauelementen. Die ersten FIB-Instrumente wurden in der Halbleiterindustrie eingesetzt, um mit fokussierten Gallium-Ionen Fotomasken zu korrigieren. Heute gibt es FIB-Anlagen mit vielen unterschiedlichen Ionensorten. Eine wichtige Anwendung ist die Präparation von Proben für hochaufgelöste, nanometergenaue Bildgebungsverfahren unter dem Elektronenmikroskop. Auch die Lebenswissenschaften nutzen FIB-Methoden, zum Beispiel zur Analyse und Darstellung von Mikro-Organismen und Viren mit FIB-basierter Tomographie, die tiefe Einblicke in mikroskopische Strukturen und deren Funktion erlaubt.

FIB-Instrumente entwickeln sich stetig weiter, hin zu anderen Energien, schwereren Ionen und neuen Möglichkeiten, wie der ortsaufgelösten Erzeugung einzelner atomarer Defekte in ansonsten perfekten Kristallen. Eine solche Bearbeitung von Materialien und Bauelementen mit FIB hat enormes Potential in der Quanten- und Informationstechnologie. Diese Bandbreite von Anwendungen von der Grundlagenforschung bis zum fertigen Bauteil, von Physik über Materialwissenschaften und Chemie bis hin zu den Lebenswissenschaften oder sogar zur Archäologie ist absolut einzigartig. „Wir hoffen, dass unsere Roadmap wissenschaftliche und technologische Durchbrüche inspirieren kann und wie ein Inkubator für künftige Entwicklungen wirkt“, sagt Gregor Hlawacek.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.