Revolutionäre Materialforschung: Helmholtz High Impact Award für neuartige Tandem-Solarzellen

Eva Unger (3. v.l., Helmholtz-Zentrum Berlin) und Michael Saliba (4. v.l., Forschungszentrum Jülich) nehmen stellvertretend für ihr Forschungsteam den ersten Helmholtz High Impact Award von Helmholtz-Präsident Otmar D.Wiestler (2. v.l.), Bundesforschungsministerin Bettina Stark-Watzinger (5. v.l.) und Laudatorin Carla Seidel (1. v.l., BASF) entgegen.

Eva Unger (3. v.l., Helmholtz-Zentrum Berlin) und Michael Saliba (4. v.l., Forschungszentrum Jülich) nehmen stellvertretend für ihr Forschungsteam den ersten Helmholtz High Impact Award von Helmholtz-Präsident Otmar D.Wiestler (2. v.l.), Bundesforschungsministerin Bettina Stark-Watzinger (5. v.l.) und Laudatorin Carla Seidel (1. v.l., BASF) entgegen. © Till Budde

Ein multidisziplinäres Team vom Helmholtz-Zentrum Berlin (HZB) und Forschungszentrum Jülich (FZJ) erforscht und verbessert neuartige Perowskit-Solarzellen, um sie in die Anwendung zu bringen. Für ihren Ansatz und ihre Forschungsleistung erhielten Steve Albrecht, Antonio Abate und Eva Unger vom HZB sowie Michael Saliba vom FZJ am 27.09.2023 den High Impact Award. Mit der mit 50.000 Euro dotierten Auszeichnung würdigen die Helmholtz-Gemeinschaft und der Stifterverband für die Deutsche Wissenschaft innovative Ansätze, die das Potenzial haben, als Game-Change zu wirken.

Derzeitige Solarzellen nutzen meistens Silizium, um Sonnenlicht in Strom umzuwandeln, können hierfür jedoch nur einen vergleichsweise geringen Teil der einfallenden Strahlung nutzen. Deutlich effizienter ist das Mineral Perowskit. Solarzellen mit einer Perowskit-Schicht können genauso viel Licht absorbieren, dabei aber bis zu 100 Mal dünner sein. Das macht sie besonders geeignet für Anwendungen auf gekrümmten Flächen, etwa als faltbare Solarzellen auf Autos oder Gebäudefassaden. Die Schichten können aus preisgünstigen Materialien hergestellt und mit wenig Energieaufwand großflächig mit industriellen Technologien gedruckt werden. Kombiniert man Silizium und Perowskit, lässt sich die Leistung sogar noch weiter steigern. Bisher stehen diese „Tandem-Solarzellen“ jedoch vor einigen Herausforderungen, die ihre breite Anwendung verhindern: So sind Perowskite noch nicht stabil genug, sie reagieren empfindlich auf Feuchtigkeit oder Hitze und zerfallen schnell. Zudem enthalten sie Blei – für eine umweltverträgliche Anwendung muss ein Ersatz her.

Steve Albrecht, Antonio Abate und Eva Unger vom Helmholtz-Zentrum Berlin sowie Michael Saliba vom Forschungszentrum Jülich kombinieren ihre Expertisen in den Bereichen Elektrotechnologie, Chemie und Physik, um diesen Herausforderungen zu begegnen. Mit ihrer Forschung leisten sie grundlegende, wegweisende Beiträge, um eine kommerzielle und umweltfreundliche Produktion von Perowskiten für die Photovoltaik und andere opto-elektronische Anwendungen zu ermöglichen. Mit großem Erfolg: Aktuelle Forschungsarbeiten des Teams zeigen, dass Perowskit-Silizium-Tandemsolarzellen bisher über 30 Prozent der Sonnenenergie in Strom umwandeln können. Die gewonnenen Daten will das Team der Wissenschaftscommunity frei zur Verfügung stellen, um die Ergebnisse transparent und vergleichbar zu machen.

Für ihren Ansatz und ihre Ergebnisse erhielten die vier Forschenden nun den ersten Helmholtz-High Impact Award. „Das Team um Steve Albrecht und Eva Unger demonstriert auf beeindruckende Weise die Stärke der Helmholtz-Gemeinschaft: Es verbindet verschiedene Disziplinen und arbeitet über Zentrumsgrenzen hinweg zusammen, um eine der größten Herausforderungen unserer Zeit anzugehen: die Energiewende. Mit ihrer einzigartigen Expertise und ihrer Innovationskraft schaffen es die vier Wissenschaftler*innen, die Spitzenforschung auf dem Gebiet der Photovoltaik entscheidend voranzubringen und zu prägen. Ich gratuliere diesem jungen internationalen Team ganz herzlich zum wohlverdienten High Impact Award“, sagt Helmholtz-Präsident Otmar D. Wiestler.

Über den Helmholtz High Impact Award

Zusammen mit dem Stifterverband für die Deutsche Wissenschaft vergibt die Helmholtz-Gemeinschaft den neu etablierten „Helmholtz High Impact Award“ zum ersten Mal in diesem Jahr. Die mit 50.000 Euro dotierte Auszeichnung würdigt hoch innovative interdisziplinäre Beiträge, die eine große Herausforderung aus Wissenschaft, Wirtschaft oder Gesellschaft adressieren. Dabei geht es insbesondere um neue Ansätze, die das Potential haben, als ‚game changer‘ in einem relevanten Problemfeld zu wirken. Die Preisverleihung fand bei der diesjährigen Helmholtz Jahrestagung am 27. September statt.

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.