Revolutionäre Materialforschung: Helmholtz High Impact Award für neuartige Tandem-Solarzellen

Eva Unger (3. v.l., Helmholtz-Zentrum Berlin) und Michael Saliba (4. v.l., Forschungszentrum Jülich) nehmen stellvertretend für ihr Forschungsteam den ersten Helmholtz High Impact Award von Helmholtz-Präsident Otmar D.Wiestler (2. v.l.), Bundesforschungsministerin Bettina Stark-Watzinger (5. v.l.) und Laudatorin Carla Seidel (1. v.l., BASF) entgegen.

Eva Unger (3. v.l., Helmholtz-Zentrum Berlin) und Michael Saliba (4. v.l., Forschungszentrum Jülich) nehmen stellvertretend für ihr Forschungsteam den ersten Helmholtz High Impact Award von Helmholtz-Präsident Otmar D.Wiestler (2. v.l.), Bundesforschungsministerin Bettina Stark-Watzinger (5. v.l.) und Laudatorin Carla Seidel (1. v.l., BASF) entgegen. © Till Budde

Ein multidisziplinäres Team vom Helmholtz-Zentrum Berlin (HZB) und Forschungszentrum Jülich (FZJ) erforscht und verbessert neuartige Perowskit-Solarzellen, um sie in die Anwendung zu bringen. Für ihren Ansatz und ihre Forschungsleistung erhielten Steve Albrecht, Antonio Abate und Eva Unger vom HZB sowie Michael Saliba vom FZJ am 27.09.2023 den High Impact Award. Mit der mit 50.000 Euro dotierten Auszeichnung würdigen die Helmholtz-Gemeinschaft und der Stifterverband für die Deutsche Wissenschaft innovative Ansätze, die das Potenzial haben, als Game-Change zu wirken.

Derzeitige Solarzellen nutzen meistens Silizium, um Sonnenlicht in Strom umzuwandeln, können hierfür jedoch nur einen vergleichsweise geringen Teil der einfallenden Strahlung nutzen. Deutlich effizienter ist das Mineral Perowskit. Solarzellen mit einer Perowskit-Schicht können genauso viel Licht absorbieren, dabei aber bis zu 100 Mal dünner sein. Das macht sie besonders geeignet für Anwendungen auf gekrümmten Flächen, etwa als faltbare Solarzellen auf Autos oder Gebäudefassaden. Die Schichten können aus preisgünstigen Materialien hergestellt und mit wenig Energieaufwand großflächig mit industriellen Technologien gedruckt werden. Kombiniert man Silizium und Perowskit, lässt sich die Leistung sogar noch weiter steigern. Bisher stehen diese „Tandem-Solarzellen“ jedoch vor einigen Herausforderungen, die ihre breite Anwendung verhindern: So sind Perowskite noch nicht stabil genug, sie reagieren empfindlich auf Feuchtigkeit oder Hitze und zerfallen schnell. Zudem enthalten sie Blei – für eine umweltverträgliche Anwendung muss ein Ersatz her.

Steve Albrecht, Antonio Abate und Eva Unger vom Helmholtz-Zentrum Berlin sowie Michael Saliba vom Forschungszentrum Jülich kombinieren ihre Expertisen in den Bereichen Elektrotechnologie, Chemie und Physik, um diesen Herausforderungen zu begegnen. Mit ihrer Forschung leisten sie grundlegende, wegweisende Beiträge, um eine kommerzielle und umweltfreundliche Produktion von Perowskiten für die Photovoltaik und andere opto-elektronische Anwendungen zu ermöglichen. Mit großem Erfolg: Aktuelle Forschungsarbeiten des Teams zeigen, dass Perowskit-Silizium-Tandemsolarzellen bisher über 30 Prozent der Sonnenenergie in Strom umwandeln können. Die gewonnenen Daten will das Team der Wissenschaftscommunity frei zur Verfügung stellen, um die Ergebnisse transparent und vergleichbar zu machen.

Für ihren Ansatz und ihre Ergebnisse erhielten die vier Forschenden nun den ersten Helmholtz-High Impact Award. „Das Team um Steve Albrecht und Eva Unger demonstriert auf beeindruckende Weise die Stärke der Helmholtz-Gemeinschaft: Es verbindet verschiedene Disziplinen und arbeitet über Zentrumsgrenzen hinweg zusammen, um eine der größten Herausforderungen unserer Zeit anzugehen: die Energiewende. Mit ihrer einzigartigen Expertise und ihrer Innovationskraft schaffen es die vier Wissenschaftler*innen, die Spitzenforschung auf dem Gebiet der Photovoltaik entscheidend voranzubringen und zu prägen. Ich gratuliere diesem jungen internationalen Team ganz herzlich zum wohlverdienten High Impact Award“, sagt Helmholtz-Präsident Otmar D. Wiestler.

Über den Helmholtz High Impact Award

Zusammen mit dem Stifterverband für die Deutsche Wissenschaft vergibt die Helmholtz-Gemeinschaft den neu etablierten „Helmholtz High Impact Award“ zum ersten Mal in diesem Jahr. Die mit 50.000 Euro dotierte Auszeichnung würdigt hoch innovative interdisziplinäre Beiträge, die eine große Herausforderung aus Wissenschaft, Wirtschaft oder Gesellschaft adressieren. Dabei geht es insbesondere um neue Ansätze, die das Potential haben, als ‚game changer‘ in einem relevanten Problemfeld zu wirken. Die Preisverleihung fand bei der diesjährigen Helmholtz Jahrestagung am 27. September statt.

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.