Quantencomputer: Gewissheit aus dem Zufall ziehen

Quantencomputer (hier ein Experiment am Technology Innovation Institute in Abu Dhabi) arbeiten bei sehr niedrigen Temperaturen, um Rauschen und unerwünschte Störungen zu minimieren. Mit einem neu entwickelten mathematischen Werkzeug ist es nun möglich, die Leistung eines Quantencomputers durch zufällige Testdaten zu bewerten und mögliche Fehler zu diagnostizieren.

Quantencomputer (hier ein Experiment am Technology Innovation Institute in Abu Dhabi) arbeiten bei sehr niedrigen Temperaturen, um Rauschen und unerwünschte Störungen zu minimieren. Mit einem neu entwickelten mathematischen Werkzeug ist es nun möglich, die Leistung eines Quantencomputers durch zufällige Testdaten zu bewerten und mögliche Fehler zu diagnostizieren.

Quantencomputer werden mit zunehmender Größe und Komplexität undurchschaubar. Mit Methoden der mathematischen Physik ist es nun einem Team gelungen, aus zufälligen Datensequenzen konkrete Zahlen abzuleiten, die als Maßstab für die Leistungsfähigkeit eines Quantencomputersystems dienen können. An der Arbeit mit Quantencomputer, die nun in Nature communications veröffentlicht ist, waren Experten des Helmholtz-Zentrum Berlin, der Freien Universität Berlin, des Qusoft Forschungszentrum Amsterdam, der Universität Kopenhagen sowie des Technology Innovation Institute Abu Dhabi beteiligt.

Mit Quantencomputern lassen sich insbesondere Quantensysteme deutlich effizienter berechnen und zum Beispiel Probleme in der Materialforschung lösen. Je größer und komplexer jedoch Quantencomputer werden, desto weniger lassen sich die Prozesse durchschauen, die zum Ergebnis führen. Um solche Quantenoperationen zu charakterisieren und die Fähigkeiten von Quantencomputern mit der klassischen Rechenleistung bei denselben Aufgaben fair zu vergleichen, werden daher passende Werkzeuge gebraucht. Ein solches Werkzeug mit überraschenden Talenten hat nun ein Team um Prof. Jens Eisert und Ingo Roth entwickelt.

Benchmarking von Quantencomputern

Roth, der aktuell am Technology Innovation Institute in Abu Dhabi eine Gruppe aufbaut, erläutert: „Aus den Ergebnissen zufällig gewählter Experimente können wir mit mathematischen Methoden nun viele verschiedene Zahlen extrahieren, die zeigen, wie nah die Operationen im statistischen Mittel an den gewünschten Operationen sind. Damit kann man aus den gleichen Daten viel mehr lernen als zuvor. Und zwar – das ist das Entscheidende – wächst die benötigte Datenmenge nicht linear sondern nur logarithmisch.“ Dies konnte das Team sogar mathematisch beweisen. Konkret bedeutet das: Um hundertmal so viel zu lernen, werden nur doppelt so viel Daten gebraucht. Eine enorme Verbesserung.

Eisert, der eine gemeinsame Forschungsgruppe zu theoretischer Physik am Helmholtz-Zentrum Berlin und der Freien Universität Berlin leitet, sagt: „Es geht hier um das Benchmarking von Quantencomputern. Wir haben gezeigt, wie man mit randomisierten Daten solche Systeme kalibrieren kann. Das ist eine sehr wichtige Arbeit für die Entwicklung von Quantencomputern.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.
  • Perowskit-Solarzellen: Protokolle für Reproduzierbarkeit und Vergleichbarkeit
    Nachricht
    22.10.2024
    Perowskit-Solarzellen: Protokolle für Reproduzierbarkeit und Vergleichbarkeit
    Zehn Teams am Helmholtz-Zentrum Berlin bauen eine langfristige internationale Allianz auf, um gemeinsam Verfahren zu entwickeln, die die Reproduzierbarkeit von Perowskit-Materialien sicherstellen. Das Projekt TEAM PV wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.