BESSY II: Oberflächen von Katalysatorpartikeln in wässrigen Lösungen analysiert

Der Mikrostrahl ist ein schnell fließender Flüssigkeitsstrom, der so dünn ist, dass er nur eine extrem schwache Dampfwolke erzeugt. Photonen und Partikel können die Oberfläche des Strahls erreichen und verlassen, ohne mit den Dampfmolekülen zusammenzustoßen.

Der Mikrostrahl ist ein schnell fließender Flüssigkeitsstrom, der so dünn ist, dass er nur eine extrem schwache Dampfwolke erzeugt. Photonen und Partikel können die Oberfläche des Strahls erreichen und verlassen, ohne mit den Dampfmolekülen zusammenzustoßen.

In einem feinen Strahl schießt die Flüssigkeit mit suspendierten Metall-Oxid-Nanopartikeln durch das Röntgenlicht. So lassen sich chemische Reaktionen an den Grenzflächen zwischen festen Metall-Oxid-Partikeln und flüssigem Elektrolyt untersuchen.

In einem feinen Strahl schießt die Flüssigkeit mit suspendierten Metall-Oxid-Nanopartikeln durch das Röntgenlicht. So lassen sich chemische Reaktionen an den Grenzflächen zwischen festen Metall-Oxid-Partikeln und flüssigem Elektrolyt untersuchen.

In einem Sonderheft zur Liquid-Jet-Methode berichtet ein Team über Reaktionen von Wassermolekülen an den Oberflächen von Metalloxid-Teilchen. Die Ergebnisse sind für die Entwicklung von effizienten Photoelektroden für die Produktion von grünem Wasserstoff relevant. 

Grüner Wasserstoff aus Wasser und Sonnenlicht lässt sich direkt in einer photoelektrochemischen Zelle produzieren. Dafür müssen jedoch supereffiziente Photoelektroden entwickelt werden, die viele Talente gleichzeitig besitzen: Das Sonnenlicht in Strom umwandeln, im sauren oder basischen Wasser stabil bleiben, als Katalysatoren die Aufspaltung von Wasser in Wasserstoff und Sauerstoff befördern und noch dazu preiswert, verfügbar und ungiftig sein. Die große Materialklasse der Metalloxide kommt in Frage.

Es ist jedoch knifflig, herauszufinden, was wirklich an den Grenzflächen zwischen den festen Metalloxid-Elektroden und dem wässrigen Elektrolyten passiert. Denn normale Röntgenanalytik funktioniert nicht, um Vorgänge an Proben in flüssigen Umgebungen zu untersuchen. Eine der wenigen geeigneten Methoden sind Experimente mit einem Liquid-Jet, einem extrem feinen Flüssigkeitsstrahl, in dem Nanopartikel aus Metalloxid suspendiert sind. Dieser Strahl schießt durch das Röntgenlicht von BESSY II, Störungen der Messdaten durch verdampfte Moleküle sind dabei vernachlässigbar.

Dr. Robert Seidel ist Experte für diese Liquid-Jet-Methode, zu der nun ein Sonderheft der „Accounts of Chemical Research“ erschienen ist. Auf Einladung hat er als Gastherausgeber das Heft betreut und berichtet darin auch über neue Experimente an BESSY II, die er mit Dr. Hebatallah Ali und Dr. Bernd Winter vom Fritz-Haber-Institut durchgeführt hat. Sie untersuchten dabei zwei wichtige Modellsysteme für Photoelektroden: Nanopartikel aus Eisenoxid (Hämatit, α-Fe2O3, und Anatas (Titanoxid oder TiO2) in wässrigen Elektrolyten mit unterschiedlichen pH-Werten. Hämatit und Anatas in Suspensionen sind photokatalytische Modellsysteme. Sie sind ideal geeignet, um die Grenzfläche zwischen Festkörper und Elektrolyt auf molekularer Ebene zu untersuchen und chemische Reaktionen an Elektroden-Elektrolyt-Grenzflächen besser zu verstehen.

Einblicke in Wechselwirkungen an Oberflächen mit Wassermolekülen

„Wir haben mit resonanter Photoelektronenspektroskopie (PES) die charakteristischen Fingerabdrücke verschiedener Reaktionen identifiziert. Damit konnten wir rekonstruieren, welche Reaktionsprodukte unter verschiedenen Bedingungen, insbesondere abhängig vom pH-Wert, entstehen.“ Die zentrale Frage: Wie reagieren die Wasser-Moleküle mit oder an den Oberflächen der Nanopartikel?

Wie sauer oder wie basisch ein Elektrolyt ist, macht in der Tat einen großen Unterschied, stellte Seidel fest. „Bei niedrigem pH-Wert tendieren Wassermoleküle an der Hämatit-Oberfläche dazu, sich aufzuspalten. Bei Anatas ist das nicht so, da werden Wassermoleküle an der Oberfläche der TiO2-NP adsorbiert“, berichtet Seidel. Damit Wassermoleküle an den Anatas-Nanoteilchen zerlegt werden, ist ein basischer pH-Wert nötig. „Solche Einblicke in die Wechselwirkungen an Oberflächen mit Wassermolekülen sind nur mit dieser Liquid-Jet-Methode möglich“, sagt Seidel.

Aus den Spektren konnten sie auch auf ultra-schnelle Elektronenübergänge zwischen Metalloxid und den (aufgespalteten) Wassermolekülen auf der Oberfläche schließen. Die Ergebnisse erlauben Einblicke in die ersten Schritte der Wasserdissoziation und helfen, den Mechanismus für die lichtinduzierte Wasserspaltung an Metalloxid-Oberflächen aufzuklären.

Die Sonderausgabe zur Liquid-Jet-Methode

Im Vorwort zur Sonderausgabe heisst es: „Gießen Sie ein Glas Wasser ein und halten Sie es in einem Abstand von einem Zentimeter direkt an Ihre Nase. Was sehen Sie nicht? Entlang einer Linie zwischen Ihrer Nasenspitze und der Wasseroberfläche befinden sich etwa 3 Millionen Moleküle. Stellen Sie sich vor, ein Röntgenphoton oder ein Teilchen versucht, die Oberfläche zu erreichen, stößt aber zuerst mit einigen dieser Moleküle zusammen, so dass Informationen über ihre Wechselwirkungen mit den Molekülen an der Grenzfläche und in der Tiefe des Wassers durcheinandergeraten.“

Was das Vorwort in der Sonderausgabe so anschaulich schildert, war lange ein großes Problem. Erst mit der Liquid-Jet-Methode, die Manfred Faubel, Stephan Schlemmer und Jan Peter Toennies 1988 vorstellten, ließen sich Wasseroberflächen ohne diese Störungen untersuchen. Der Mikrojet ist ein schnell fließender Flüssigkeitsstrom, der so schmal ist, dass er nur eine extrem verdünnte Dampfwolke erzeugt. Photonen und Partikel können die Oberfläche des Jets erreichen oder verlassen, ohne mit den Dampfmolekülen zusammenzustoßen. Ein Sonderheft der Accounts of Chemical Research stellt nun neue spannende Ergebnisse mit dieser Methode vor. Als Gastherausgeber wurde der HZB-Forscher Dr. Robert Seidel verpflichtet.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.