Solarer Wasserstoff: Hürden für Ladungstransport in Metalloxiden

Im Femtosekundenlabor werden alle Proben sowohl mit einer Terahertz-Methode (OPTP) als auch mit Mikrowellenspektroskopie (TRMC) untersucht, beide Messmethoden liefern zunächst Informationen über die Mobilität und Lebensdauer der Ladungsträger in Metalloxiden- allerdings auf unterschiedlichen Zeitskalen.

Im Femtosekundenlabor werden alle Proben sowohl mit einer Terahertz-Methode (OPTP) als auch mit Mikrowellenspektroskopie (TRMC) untersucht, beide Messmethoden liefern zunächst Informationen über die Mobilität und Lebensdauer der Ladungsträger in Metalloxiden- allerdings auf unterschiedlichen Zeitskalen. © HZB

Metalloxide eignen sich theoretisch ideal als Photoelektroden für die direkte Erzeugung von Wasserstoff mit Sonnenlicht. Nun gelang es einem Team am Helmholtz-Zentrum Berlin erstmals, die Transporteigenschaften der Ladungsträger in unterschiedlichen Metalloxiden über einen Zeitbereich von neun Größenordnungen zu ermitteln.

Dies gelang durch die Kombination von Terahertz- und Mikrowellen-Analysen in einem Zeitbereich von von 100 Femtosekunden bis 100 Mikrosekunden. Dabei zeigte sich bzgl. Metalloxide, wie Ladungsträger festgehalten werden oder ganz verloren gehen, und damit nicht zur Erzeugung von Wasserstoff zur Verfügung stehen. An ersten Materialen konnten diese Effekte verringert werden, was bessere Photoelektroden ermöglicht.

Metalloxide eignen sich theoretisch ideal als Photoelektroden

Klimaneutral erzeugter Wasserstoff soll als Brennstoff und Rohstoff künftig eine große Rolle spielen. Dabei wird Wasserstoff durch Elektrolyse von Wasser erzeugt, entweder mit einem indirekten Ansatz, in welchem eine externe Energiequelle (Solarmodul oder Windrad) die Elektrolysezelle mit Spannung versorgt oder mit einem direkten Ansatz: Einer photoelektrochemischen Zelle, in der die Photoelektrode selbst die elektrische Energie für die Elektrolyse liefert (PEC-Zelle). Dieser direkte Ansatz hätte einige Vorteile, ist aber bislang noch nicht wettbewerbsfähig.

Dies liegt bisher vor allem am Mangel an geeigneten Photoelektroden. Als prinzipiell geeignet gelten Metalloxide, sie sind preiswert, ungiftig, stabil in wässriger Lösung und besitzen zudem oft noch katalytische Eigenschaften, die die gewünschte chemische Reaktion beschleunigen können. Und Sonnenlicht setzt Ladungsträger in Metalloxiden frei, erzeugt also eine elektrische Spannung. Aber Im Vergleich zu dotierten Halbleitern wie Silizium sind diese Ladungsträger nicht sehr mobil, sondern eher langsam, oder setzen sich gleich wieder im Gitter fest, werden also lokalisiert. Dafür sorgen verschiedene Mechanismen auf unterschiedlichen Zeit- und Längenskalen, die noch kaum erforscht sind.

Im Femtosekundenlaserlabor am HZB hat das Team um Dr. Dennis Friedrich und Dr. Hannes Hempel nun erstmals im Detail untersucht, was die Leitfähigkeit von Metalloxiden begrenzt: „Dabei wollten wir herausfinden, wie stark Ladungsträger lokalisiert werden und wie dies ihre Mobilität zu unterschiedlichen Zeiten herabsetzt“, sagt Markus Schleuning, Erstautor der Studie, der zu diesem Thema promoviert hat.

„Zunächst haben wir ein neues Verfahren entwickelt, um die Diffusionslängen zu bestimmen. Die simple Gleichung kann auch auf andere Materialklassen wie Halide-Perowskite oder Silizium angewendet werden“, erklärt Hempel. „Dann haben wir heraus gefunden, das dies für bestimmte Materialien nicht funktioniert und zwar genau dann, wenn die Ladungsträger lokalisiert sind“, fügt Friedrich hinzu.

Beste Materialien für klimaneutral erzeugten Wasserstoff

Im Femtosekundenlabor werden dafür alle Proben sowohl mit einer Terahertz-Methode (OPTP) als auch mit Mikrowellenspektroskopie (TRMC) untersucht. Beide Messmethoden ermöglichen zunächst Aussagen zu Beweglichkeit und Lebenszeit der Ladungsträger– jedoch auf unterschiedlichen Zeitskalen. Dabei können die jeweiligen Ergebnisse stark voneinander abweichen – ein Beleg dafür, dass Ladungsträger in der Zwischenzeit lokalisiert wurden. Von ultraschnellen Prozessen im Bereich von 100 Femtosekunden bis zu langsameren Vorgängen, die 100 Mikrosekunden dauerten, konnte das Team die Dynamik der Ladungsträger in den Materialien bestimmen. Zum Vergleich: Dies wären auf unsere menschliche Zeitwahrnehmung hochgerechnet Veränderungen in Zeitspannen von 1 Sekunde bis zu 31 Jahren.

Die Physiker analysierten mit diesem Verfahren zehn Metalloxid-Verbindungen, darunter Fe2O3, CuFeO2, α-SnWO4, BaSnO3 und CuBi2O4. Bei allen Materialien waren die Mobilitäten im Vergleich zu herkömmlichen Halbleitern sehr gering. Mit Tempern, einer Wärmebehandlung, gelang es, in BaSnO3, die Mobilität deutlich zu verbessern. Am besten schnitt das bekannte Bismutvanadat (BiVO4) ab, wo es kaum zur Lokalisation von Ladungsträgern auf den untersuchten Längenskalen kommt. Die Studie zeigt, wie sich Metalloxidverbindungen charakterisieren lassen, um die besten Materialien für Photoelektroden zu identifizieren und weiter zu entwickeln.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.