Grüner Wasserstoff: Ko-Produktion von wertvollen Chemikalien steigert die Wirtschaftlichkeit
Dass es funktioniert, ist klar: Schon heute gibt es verschiedene Ansätze, um Solarenergie für die Elektrolyse von Wasser zu nutzen und Wasserstoff zu produzieren. Leider ist dieser grüne Wasserstoff bislang teurer als grauer Wasserstoff aus Erdgas. Doch grüner Wasserstoff hergestellt durch Sonnenlicht kann profitabel werden, zeigt eine Studie aus dem Helmholtz-Zentrum Berlin (HZB) und der Technischen Universität Berlin.
Ein Teil des Wasserstoffs wird genutzt, um Rohchemikalien aus Biomasse zu hochwertigen Chemikalien für die Industrie aufzubereiten. Dieses Konzept der Ko-Produktion ist sehr flexibel; in derselben Anlage können je nach Bedarf unterschiedliche Produkte hergestellt werden. So bald wie möglich müssen wir ohne fossile Brennstoffe auskommen, um die globale Klimaerwärmung zu begrenzen. Im Energiesystem der Zukunft wird grüner Wasserstoff daher eine wichtige Rolle bei der Energiespeicherung, als Brennstoff und als erneuerbarer Rohstoff für die Herstellung von Chemikalien spielen.
Aktuell wird Wasserstoff allerdings hauptsächlich aus fossilem Erdgas gewonnen (grauer Wasserstoff). Grüner Wasserstoff hingegen wird durch Elektrolyse von Wasser mit Hilfe erneuerbarer Energien hergestellt. Ein vielversprechender Ansatz ist der Einsatz von photoelektrochemischen Anlagen (PEC) zur Erzeugung von Wasserstoff mit Hilfe von Sonnenenergie. Allerdings ist Wasserstoff aus PEC-Anlagen noch viel teurer als Wasserstoff aus (fossilem) Methan.
Volle Kontrolle über die Reaktionen
Ein Team um den Chemiker Fatwa Abdi (bis Mitte 2023 am HZB, nun an der City University in Hongkong) und Reinhard Schomäcker (UniSysCat, TU Berlin) hat nun untersucht, wie sich die Bilanz verändert, wenn ein Teil des Wasserstoffs genutzt wird, um mit Itaconsäure (IA) Methylbernsteinsäure (MSA) zu erzeugen – und zwar innerhalb derselben PEC-Anlage. Der Ausgangsstoff Itaconsäure stammt dabei aus Biomasse und wird zugeführt. Methylbernsteinsäure ist eine hochwertige Chemikalie, die von der chemischen und pharmazeutischen Industrie benötigt wird. In der Studie beschreibt das Team, wie sich die chemischen Reaktionen in der PEC-Anlage steuern lassen: Dafür variierten sie Prozessparameter und die Konzentration des homogenen Katalysators auf Rhodiumbasis, der wasserlöslich und bereits bei Raumtemperatur aktiv ist. So konnten sie unterschiedlich große Anteile des Wasserstoffs für die Hydrierung von Itaconsäure nutzen und gezielt die Produktion von Methylbernsteinsäure hoch- oder herunter regeln.
Ab 11% Wasserstoff für MSA wird die Anlage wirtschaftlich
Bei einem realistischen Wirkungsgrad der PEC-Anlage von 10 Prozent und unter Berücksichtigung von Primärkosten sowie Betriebs-, Wartungs- und Stilllegungskosten bleibt die reine PEC-Wasserstoffproduktion zu teuer im Vergleich mit der Produktion aus fossilem Methan. Das gilt sogar dann, wenn man die Lebensdauer der PEC-Anlage mit 40 Jahren ansetzt.
Diese Bilanz ändert sich, wenn die PEC-Reaktion mit dem Hydrierungsprozess gekoppelt wird. Selbst wenn nur 11 % des erzeugten Wasserstoffs in MSA umgewandelt werden, sinken die Kosten auf 1,5 € pro Kilogramm Wasserstoff und liegen damit auf dem gleichen Niveau wie für Wasserstoff aus der Methandampfreformierung. Dies gilt schon ab einer Lebensdauer der PEC-Anlage von nur 5 Jahren! Da der Marktpreis von MSA deutlich höher ist als der von Wasserstoff, erhöht mehr MSA die Rentabilität weiter. Im Experiment war es möglich, gezielt zwischen 11% und bis zu 60 % des Wasserstoffs für die Produktion von MSA zu nutzen.
Zusätzlich, das zeigten die Forschungsteams in einer früheren Studie, reduziert die Ko-Produktion von MSA auch die so genannte energetische Amortisationszeit, also die Zeit, in der die Anlage laufen muss, um die Energie wieder hereinzuholen, die ihre Produktion gekostet hat.
Ko-Produktion ist flexibel umschaltbar
Ein großes Plus der hier vorgestellten Technologie: Statt MSA lassen sich im Prinzip auch andere Verbindungen in der Anlage als Ko-Produkte erzeugen, wenn man andere Ausgangsstoffe und Katalysatoren einsetzt, zum Beispiel ließe sich Aceton zu Isopropanol hydrieren. „Wir haben hier einen vielversprechenden Weg entdeckt, um die solare Wasserstofferzeugung wirtschaftlich zu machen“, sagt Fatwa Abdi.
Die Studie wurde im Rahmen des Berliner Exzellenzclusters "UniSysCat" (Unifying Systems in Catalysis) durchgeführt und von der Exzellenzinitiative der Helmholtz-Gemeinschaft gefördert.
Originalpublikationen
Nature communications (2023): Solar-driven upgrading of biomass by coupled hydrogenation using in situ (photo)electrochemically generated H2, Keisuke Obata, Michael Schwarze, Tabea A. Thiel, Xinyi Zhang, Babu Radhakrishnan, Ibbi Y. Ahmet, Roel van de Krol, Reinhard Schomäcker & Fatwa F. Abdi, https://doi.org/10.1038/s41467-023-41742-4
Anmerkung: In einer vorherigen Studie, die vor wenigen Monaten in Nature communications veröffentlich wurde, hat das Team um Fatwa Abdi bereits gezeigt, dass sich durch die Koproduktion von MSA auch die energetische Amortisationszeit des direkten PEC-Ansatzes reduziert.
Nature communications (2023): Sustainable H2 production and hydrogenation of chemicals in a coupled photoelectrochemical device – a life cycle net energy assessment, Xinyi Zhang, Michael Schwarze, Reinhard Schomäcker, Roel van de Krol, and Fatwa F. Abdi, Institute for Solar Fuels, Helmholtz-Zentrum und Technische Universität Berlin, https://doi.org/10.1038/s41467-023-36574-1