Spintronik an BESSY II: Domänenwände in magnetischen Nanodrähten

Diese magnetempfindlichen Abbildungen entstanden am HZB: a) XAS-Bild des Nanodraht-Kreuzes. Röntgenstrahl und Magnetfeld sind entlang der (vertikalen) Richtung des Nanodrahtes ausgerichtet (grüner Pfeil). b-f) XMCD-Bilder des Kreuzes für verschiedene angelegte Felder.

Diese magnetempfindlichen Abbildungen entstanden am HZB: a) XAS-Bild des Nanodraht-Kreuzes. Röntgenstrahl und Magnetfeld sind entlang der (vertikalen) Richtung des Nanodrahtes ausgerichtet (grüner Pfeil). b-f) XMCD-Bilder des Kreuzes für verschiedene angelegte Felder. © HZB

Magnetische Domänenwände sorgen für elektrischen Widerstand, da es für Elektronenspins schwierig ist, ihrer magnetischen Struktur zu folgen. Dieses Phänomen könnte in spintronischen Bauelementen genutzt werden, bei denen der elektrische Widerstand je nach Vorhandensein oder Fehlen einer Domänenwand variieren kann. Eine besonders interessante Materialklasse sind Halbmetalle wie La2/3Sr1/3MnO3 (LSMO). Sie weisen vollständige Spinpolarisation auf. Allerdings war der Widerstand einer einzelnen Domänenwand in Halbmetallen bisher noch nicht bestimmt worden. Nun hat ein Team aus Spanien, Frankreich und Deutschland eine einzelne Domänenwand auf einem LSMO-Nanodraht erzeugt und Widerstandsänderungen gemessen, die 20mal größer sind als bei normalen Ferromagneten wie Kobalt.

 

Die magnetische Textur, die magnetischen Domänenwänden eigen ist, birgt Potenzial für spintronische Anwendungen. Der elektrische Widerstand in Ferromagneten hängt davon ab, ob Domänenwände vorhanden sind oder nicht. Dieser binäre Effekt (bekannt als Domänenwand-Magnetowiderstand) könnte zur Codierung von Informationen in spintronischen Speichergeräten genutzt werden. Ihre Nutzung wird jedoch durch die geringen Änderungen des Widerstands behindert, die bei normalen Ferromagneten beobachtet werden. Eine besonders interessante Klasse von Materialien sind Manganit-Perowskite wie La2/3Sr1/3MnO3 (LSMO). Diese Verbindungen weisen nur eine Art von Spin auf (vollständige Spinpolarisation), was potenziell zu Domänenwand-Magnetowiderstandseffekten führen könnte, die groß genug sind, um in einer neuen Generation von spintronischen Sensoren und Injektoren genutzt zu werden.

Trotz dieser Perspektive gibt es große Diskrepanzen bei den berichteten Werten des Domänenwand-Magnetowiderstands für dieses System. Ein Team aus Spanien, Frankreich und Deutschland hat nun Bauelemente aus Nanodrähten hergestellt, die die Keimbildung einzelner magnetischer Domänenwände ermöglichen. Magnetotransportmessungen zeigen, dass das Vorhandensein einer Domänenwand zu einer Erhöhung des elektrischen Widerstands um bis zu 12 % führt. In absoluten Zahlen ist die beobachtete Widerstandsänderung 20mal größer als in einem normalen Ferromagneten wie Kobalt.

Diese Arbeit ist das Ergebnis einer langjährigen Zusammenarbeit, die Filmwachstum und Nanofabrikation, Transportmessungen, Kontaktmikroskopie (MFM), theoretische Simulationen und den Einsatz fortschrittlicher Charakterisierungstechniken wie der Röntgen-Photoemissions-Elektronenmikroskopie umfasst. Die Kombination einer Vielzahl unterschiedlicher Techniken ermöglicht einen facettenreichen Blick auf ein komplexes Problem, der neue Einblicke in eine heftig diskutierte offene Frage ermöglicht hat.

Sergio Valencia

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.