Wieviel Cadmium steckt im Kakao?

Kakaobohnen lassen sich zu köstlicher Schokolade verarbeiten. Leider nehmen die Bohnen aber auch Schwermetalle auf, wenn die Böden belastet sind. Nun hat ein Team an BESSY II erstmals genauer analysiert, wo sich Cadmium in den Bohnen anreichert.

Kakaobohnen lassen sich zu köstlicher Schokolade verarbeiten. Leider nehmen die Bohnen aber auch Schwermetalle auf, wenn die Böden belastet sind. Nun hat ein Team an BESSY II erstmals genauer analysiert, wo sich Cadmium in den Bohnen anreichert. © AdobeStock

Aufnahmen mit Röntgenmikroskopie mit der Röntgenfarbkamera einer gerösteten Kakaobohne. Man erkennt in der Verteilung von Eisen (rot), Zink (grün) und Rubidium (blau) die Schale der Kakaobohne und Strukturen im Inneren (Hypocotyl und Cotyleidon-Adern).

Aufnahmen mit Röntgenmikroskopie mit der Röntgenfarbkamera einer gerösteten Kakaobohne. Man erkennt in der Verteilung von Eisen (rot), Zink (grün) und Rubidium (blau) die Schale der Kakaobohne und Strukturen im Inneren (Hypocotyl und Cotyleidon-Adern). © HZB

Die Elementverteilung auf einem virtuellen Schnitt einer fermentierten Kakaobohne mittels Röntgenfluoreszenz-CT. Deutlich sichtbar ist, dass Cadmium (Cd) vor allem in der Schale vorkommt.

Die Elementverteilung auf einem virtuellen Schnitt einer fermentierten Kakaobohne mittels Röntgenfluoreszenz-CT. Deutlich sichtbar ist, dass Cadmium (Cd) vor allem in der Schale vorkommt. © HZB

Kakaobohnen können giftige Schwermetalle wie Cadmium aus dem Boden aufnehmen. Einige Anbaugebiete, insbesondere in Südamerika, sind mit diesen Schwermetallen zum Teil erheblich belastet. Durch das Zusammenspiel verschiedener Röntgenfluoreszenz-Techniken konnte nun ein Team an BESSY II erstmals nichtinvasiv messen, wo sich Cadmium in den Kakaobohnen anreichert: Weniger im Inneren der Bohne, sondern vor allem in der Schale. Weitere Untersuchungen zeigen, dass die Verarbeitung der Kakaobohnen großen Einfluss auf die Schwermetallbelastung haben kann.

Seit mindestens 5000 Jahren ernten Menschen die Bohnen des Kakaostrauchs. Sie haben gelernt, die Bohnen zu fermentieren, zu rösten, zu mahlen und mit Zucker und Fett zu köstlichen Schokoladen zu verarbeiten. Heute sind jedes Jahr rund fünf Millionen Tonnen Bohnen auf dem Markt, die nur aus einigen wenigen Anbaugebieten in tropischen Regionen kommen, denn Kakao wächst nicht überall.

Wunderbare Schokoladen

Schokolade gilt als Seelentröster, Aminosäuren wie Tryptophan hellen die Stimmung auf. Außerdem enthalten Kakaobohnen anti-entzündliche Verbindungen und wertvolle Spurenelemente. Allerdings nehmen die Kakaopflanzen auch giftige Schwermetalle auf, wenn die Böden entsprechend belastet sind, zum Beispiel durch Abraum von Bergbau, der Grundwasser und Böden allmählich vergiften kann.

Wo reichern sich Schwermetalle an?

Dabei kommt es jedoch auch darauf an, wo sich die Schwermetalle in der Bohne anreichern, ob eher in der Schale oder eher im Mehlkörper im Inneren der Bohne: Denn die Bohnen durchlaufen von der Ernte bis zum Rohstoff für Schokolade viele Behandlungsschritte, die die Belastung möglicherweise reduzieren könnten. Und zwar idealerweise so, dass die Schwermetalle reduziert werden, aber die erwünschten Spurenelemente erhalten bleiben.

Kakaobohnen "kartiert"

Ein Team um Dr. Ioanna Mantouvalou (HZB) und Dr. Claudia Keil (TU Berlin/Toxikologie) hat nun an der BAMline von BESSY II verschiedene Imaging Methoden genutzt, um die Schwermetallkonzentrationen in Kakaobohnen präzise zu kartieren. Damit untersuchten sie Kakaoproben aus einer Anbauregion in Kolumbien, die mit durchschnittlich 4,2 mg/kg Cadmium belastet waren. Das ist deutlich über den Europäischen Grenzwerten von 0,1-0,8 mg Cadmium/kg in Kakaoerzeugnissen.

Drei Analysemethoden an BESSY II kombiniert

Das Team hat mit drei verschiedenen Röntgenfluoreszenz-Techniken gearbeitet, um die Kakaobohnen zu untersuchen. Sie entwickelten u.a. eine neue Analysemethodik für die Absorptionskorrektur bei der Bildgebung mit einer Röntgenfarbkamera. „Es gab bisher wenig Erkenntnisse dazu, wie Cadmium vom Boden durch Wurzeln in die Pflanze einwandert und wo sich das Element in den Bohnen anreichert. Insbesondere auch deswegen, weil es nicht möglich war, den Cadmium-Gehalt nichtinvasiv genau zu lokalisieren“, sagt Mantouvalou. Die Doktoranden Frank Förste (TU Berlin) und Leona Bauer (TU Berlin und HZB) führten die Experimente durch.

Nachweis von Cadmium

Cadmium ist besonders schwer nachzuweisen, erklärt Mantouvalou. Denn das Cadmium-Signal, das die Anregung der äußeren Elektronen erzeugt, liegt genau unter dem sehr viel stärkeren Fluoreszenz-Signal des Elements Kaliums, das in höherer Konzentration im Kakao vorkommt. „Wir regen daher ganz gezielt eine tiefere Elektronenschale des Cadmium-Atoms an, was nur mit harten Röntgenstrahlen an der BAMLine möglich ist“, sagt Frank Förste. „Damit konnten wir die Querschnitte von Kakaobohnen nun mit hoher Auflösung kartieren, und zeigen, dass sich Cadmium vorwiegend in der äußeren Schale anreichert“, sagt Leona Bauer.

Rösten verändert die Verteilung

Dabei entdeckten sie auch interessante Unterschiede zwischen Bohnen vor und nach dem Röstvorgang: „Wir konnten nachweisen, dass sich durch das Rösten die Elementverteilung in den Bohnen ändert“, sagt Mantouvalou. Da es mit dem Zusammenspiel der genutzten Methoden nun erstmals möglich ist, die Anreicherung von Cadmium ortsgenau zu messen, könnten weitere Untersuchungen systematisch erkunden, mit welchen verbesserten Verarbeitungsschritten die Belastung minimiert wird.

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.