Lithium-Schwefel-Feststoffbatterien: Ladungstransport direkt beobachtet

Die Ver&auml;nderung der Neutronend&auml;mpfung in der Kathode zeigt, wo sich Lithium anreichert: oben beim Entladen, unten beim Aufladen. d<sub>0</sub> ist die Grenze zum Feststoff-Elektrolyten, d<sub>max</sub> ist die Grenze zwischen Kathode und Stromkollektor.

Die Veränderung der Neutronendämpfung in der Kathode zeigt, wo sich Lithium anreichert: oben beim Entladen, unten beim Aufladen. d0 ist die Grenze zum Feststoff-Elektrolyten, dmax ist die Grenze zwischen Kathode und Stromkollektor. © HZB

Der Aufbau der Feststoff-Batterie. Die Anode besteht aus Li/In, der Feststoff-Elektrolyt ist Li<sub>6</sub>PS<sub>5</sub>Cl und die Verbundkathode ist S/C/Li<sub>6</sub>PS<sub>5</sub>Cl.

Der Aufbau der Feststoff-Batterie. Die Anode besteht aus Li/In, der Feststoff-Elektrolyt ist Li6PS5Cl und die Verbundkathode ist S/C/Li6PS5Cl. © HZB

3-D-Tomographie-Bilder des entladenen (oben) und des wieder aufgeladenen Zustands (Mitte), sowie die Differenz zwischen beiden (unten), die anzeigt, wo sich die mobilen Lithium-Ionen (gr&uuml;n) befinden.

3-D-Tomographie-Bilder des entladenen (oben) und des wieder aufgeladenen Zustands (Mitte), sowie die Differenz zwischen beiden (unten), die anzeigt, wo sich die mobilen Lithium-Ionen (grün) befinden. © HZB

Lithium-Schwefel-Feststoffbatterien bieten im Vergleich zu herkömmlichen Lithium-Ionen-Batterien das Potenzial für eine wesentlich höhere Energiedichte und mehr Sicherheit. Allerdings ist die Leistungsfähigkeit von Feststoffbatterien derzeit noch unzureichend, was vor allem an sehr langen Ladezeiten liegt - und das, obwohl sie theoretisch eine besonders schnelle Aufladung ermöglichen sollten. Eine neue Studie des HZB zeigt nun, dass die Hauptursache dafür die sehr schleppende Einwanderung von Lithium-Ionen in die Verbundkathode ist.

Das Team konstruierte eine spezielle Zelle, um den Transport von Lithium-Ionen zwischen Anode und Kathode in einer Lithium-Schwefel-Feststoffbatterie zu beobachten. Da sich Lithium mit Röntgenmethoden kaum nachweisen lässt, untersuchten die HZB-Physiker Dr. Robert Bradbury und Dr. Ingo Manke die Probezelle mit Neutronen, die extrem empfindlich auf Lithium reagieren. Zusammen mit Dr. Nikolay Kardjilov, HZB, nutzten sie Neutronenradiographie und Neutronentomographie am CONRAD2-Instrument an der Berliner Neutronenquelle BER II1. Auch Gruppen aus Gießen (JLU), Braunschweig (TUBS) und Jülich (FZJ) waren an den Arbeiten beteiligt.

Lithium-Ionen beim Wandern

„Wir haben jetzt eine viel bessere Vorstellung davon, was die Leistung der Batterie einschränkt", sagt Bradbury: „Aus den Daten der operando Neutronenradiographie sehen wir, dass sich eine Reaktionsfront von Lithium-Ionen durch die Verbundkathode ausbreitet, was den negativen Einfluss der niedrigen effektiven Ionenleitfähigkeit bestätigt." Darüber hinaus zeigen die 3D-Neutronentomographie-Bilder, dass sich das eingeschlossene Lithium während des Aufladens in der Nähe des Stromabnehmers konzentriert. „Dies führt zu einer verminderten Kapazität, da nur ein Teil des Lithiums beim Aufladen der Batterie zurücktransportiert wird."

Die beobachtete Lithiumverteilung stimmt sehr gut mit einer Modellrechnung auf Basis der Theorie der porösen Elektroden überein: „Was wir hier in den Neutronenbilddaten beobachten, korreliert gut mit den relevanten elektronischen und ionischen Leitfähigkeitsbedingungen aus dem Modell", sagt Bradbury.

Der Flaschenhals ist identifiziert

Diese Ergebnisse machen auf einen bisher übersehenen Entwicklungsengpass für Feststoffbatterien aufmerksam: Der langsame Ionentransport begrenzt die Leistung. Die Herausforderung besteht nun darin, einen schnelleren Ionentransport innerhalb des Kathodenverbunds zu ermöglichen. „Ohne eine direkte Visualisierung der Reaktionsfront innerhalb des Kathodenverbunds wäre dieser Effekt möglicherweise unbemerkt geblieben, obwohl er für die Entwicklung von Festkörperbatterien von großer Bedeutung ist", sagt Bradbury.

 

Fußnote 1: Die Experimente fanden Ende 2019 statt, bevor die Neutronenquelle BER II abgeschaltet wurde. Die Arbeiten werden zukünftig im Rahmen der gemeinsamen Forschungsgruppe „NI-Matters“ zwischen dem HZB, dem Institut Laue-Langevin (Frankreich) und der Universität Grenoble (Frankreich) weiter fortgeführt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Nachricht
    26.03.2025
    Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Samira Jama Aden, Architektin in der Beratungstelle für bauwerkintegrierte Photovoltaik (BAIP), ist der Arbeitsgruppe “Environmental, Social and Governance (ESG)” der ETIP PV - The European Technology & Innovation Platform for Photovoltaics beigetreten.