Lithium-Schwefel-Feststoffbatterien: Ladungstransport direkt beobachtet

Die Ver&auml;nderung der Neutronend&auml;mpfung in der Kathode zeigt, wo sich Lithium anreichert: oben beim Entladen, unten beim Aufladen. d<sub>0</sub> ist die Grenze zum Feststoff-Elektrolyten, d<sub>max</sub> ist die Grenze zwischen Kathode und Stromkollektor.

Die Veränderung der Neutronendämpfung in der Kathode zeigt, wo sich Lithium anreichert: oben beim Entladen, unten beim Aufladen. d0 ist die Grenze zum Feststoff-Elektrolyten, dmax ist die Grenze zwischen Kathode und Stromkollektor. © HZB

Der Aufbau der Feststoff-Batterie. Die Anode besteht aus Li/In, der Feststoff-Elektrolyt ist Li<sub>6</sub>PS<sub>5</sub>Cl und die Verbundkathode ist S/C/Li<sub>6</sub>PS<sub>5</sub>Cl.

Der Aufbau der Feststoff-Batterie. Die Anode besteht aus Li/In, der Feststoff-Elektrolyt ist Li6PS5Cl und die Verbundkathode ist S/C/Li6PS5Cl. © HZB

3-D-Tomographie-Bilder des entladenen (oben) und des wieder aufgeladenen Zustands (Mitte), sowie die Differenz zwischen beiden (unten), die anzeigt, wo sich die mobilen Lithium-Ionen (gr&uuml;n) befinden.

3-D-Tomographie-Bilder des entladenen (oben) und des wieder aufgeladenen Zustands (Mitte), sowie die Differenz zwischen beiden (unten), die anzeigt, wo sich die mobilen Lithium-Ionen (grün) befinden. © HZB

Lithium-Schwefel-Feststoffbatterien bieten im Vergleich zu herkömmlichen Lithium-Ionen-Batterien das Potenzial für eine wesentlich höhere Energiedichte und mehr Sicherheit. Allerdings ist die Leistungsfähigkeit von Feststoffbatterien derzeit noch unzureichend, was vor allem an sehr langen Ladezeiten liegt - und das, obwohl sie theoretisch eine besonders schnelle Aufladung ermöglichen sollten. Eine neue Studie des HZB zeigt nun, dass die Hauptursache dafür die sehr schleppende Einwanderung von Lithium-Ionen in die Verbundkathode ist.

Das Team konstruierte eine spezielle Zelle, um den Transport von Lithium-Ionen zwischen Anode und Kathode in einer Lithium-Schwefel-Feststoffbatterie zu beobachten. Da sich Lithium mit Röntgenmethoden kaum nachweisen lässt, untersuchten die HZB-Physiker Dr. Robert Bradbury und Dr. Ingo Manke die Probezelle mit Neutronen, die extrem empfindlich auf Lithium reagieren. Zusammen mit Dr. Nikolay Kardjilov, HZB, nutzten sie Neutronenradiographie und Neutronentomographie am CONRAD2-Instrument an der Berliner Neutronenquelle BER II1. Auch Gruppen aus Gießen (JLU), Braunschweig (TUBS) und Jülich (FZJ) waren an den Arbeiten beteiligt.

Lithium-Ionen beim Wandern

„Wir haben jetzt eine viel bessere Vorstellung davon, was die Leistung der Batterie einschränkt", sagt Bradbury: „Aus den Daten der operando Neutronenradiographie sehen wir, dass sich eine Reaktionsfront von Lithium-Ionen durch die Verbundkathode ausbreitet, was den negativen Einfluss der niedrigen effektiven Ionenleitfähigkeit bestätigt." Darüber hinaus zeigen die 3D-Neutronentomographie-Bilder, dass sich das eingeschlossene Lithium während des Aufladens in der Nähe des Stromabnehmers konzentriert. „Dies führt zu einer verminderten Kapazität, da nur ein Teil des Lithiums beim Aufladen der Batterie zurücktransportiert wird."

Die beobachtete Lithiumverteilung stimmt sehr gut mit einer Modellrechnung auf Basis der Theorie der porösen Elektroden überein: „Was wir hier in den Neutronenbilddaten beobachten, korreliert gut mit den relevanten elektronischen und ionischen Leitfähigkeitsbedingungen aus dem Modell", sagt Bradbury.

Der Flaschenhals ist identifiziert

Diese Ergebnisse machen auf einen bisher übersehenen Entwicklungsengpass für Feststoffbatterien aufmerksam: Der langsame Ionentransport begrenzt die Leistung. Die Herausforderung besteht nun darin, einen schnelleren Ionentransport innerhalb des Kathodenverbunds zu ermöglichen. „Ohne eine direkte Visualisierung der Reaktionsfront innerhalb des Kathodenverbunds wäre dieser Effekt möglicherweise unbemerkt geblieben, obwohl er für die Entwicklung von Festkörperbatterien von großer Bedeutung ist", sagt Bradbury.

 

Fußnote 1: Die Experimente fanden Ende 2019 statt, bevor die Neutronenquelle BER II abgeschaltet wurde. Die Arbeiten werden zukünftig im Rahmen der gemeinsamen Forschungsgruppe „NI-Matters“ zwischen dem HZB, dem Institut Laue-Langevin (Frankreich) und der Universität Grenoble (Frankreich) weiter fortgeführt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.