Energiereiche Röntgenstrahlen hinterlassen Spuren im Knochenkollagen

Die Bilder zeigen die Kollagenverteilung in Hechtknochen (b) vor (links) und nach (rechts) einem μCT-Experiment, (c) sowie vor (links) und nach (rechts) einem Röntgenbeugungs-μCT-Experiment an der mySpot-Beamline, BESSY. Außerdem (d) vor (links) und nach (rechts) einem 2D-Mapping-XRD mySpot-Experiment. Die geschädigten Bereiche erscheinen dunkel (mit gelben Pfeilen gekennzeichnet). Die Pfeile in Pink zeigen den Verlauf der Röntgenstrahlung.

Die Bilder zeigen die Kollagenverteilung in Hechtknochen (b) vor (links) und nach (rechts) einem μCT-Experiment, (c) sowie vor (links) und nach (rechts) einem Röntgenbeugungs-μCT-Experiment an der mySpot-Beamline, BESSY. Außerdem (d) vor (links) und nach (rechts) einem 2D-Mapping-XRD mySpot-Experiment. Die geschädigten Bereiche erscheinen dunkel (mit gelben Pfeilen gekennzeichnet). Die Pfeile in Pink zeigen den Verlauf der Röntgenstrahlung. © Charité Berlin/HZB

Ein Team der Charité Berlin hat an BESSY II die Schädigung durch fokussierte hochenergetische Röntgenstrahlung in Knochenproben von Fischen und Säugetieren analysiert. Mit einer Kombination von Mikroskopietechniken konnten sie die Zerstörung von Kollagenfasern dokumentieren. Röntgenmethoden könnten Knochenproben beeinträchtigen, wenn sie über einen längeren Zeitraum gemessen werden, schlussfolgern sie.

 

Es ist seit langem bekannt, dass Röntgenstrahlen ab einer bestimmten Dosis lebendes Gewebe schädigen; daher gibt es klare medizinische Indikationen, um die Strahlenbelastung auf ein Minimum zu beschränken. In der Grundlagenforschung an mineralisierten Gewebeproben wie Knochen setzen die Forschenden jedoch bislang auf immer stärkere Röntgenquellen.

Mehr ist nicht unbedingt besser

"Bisher galt eigentlich die Devise: Mehr Fluss und höhere Energie ist besser, weil man mit intensiverer Röntgenstrahlung eine größere Tiefenschärfe und höhere Auflösung erreichen kann", sagt Dr. Paul Zaslansky von der Charité-Universitätsmedizin. Zaslansky und sein Team haben nun an der MySpot-Beamline von BESSY II Knochenproben von Fischen und Säugetieren analysiert.

Knochenproben von Tieren

BESSY II erzeugt ein breites Spektrum an Röntgenstrahlung, das Einblicke in feinste Strukturen und sogar chemische und physikalische Prozesse in Materialien ermöglicht. "Dank der empfindlichen Detektoren konnten wir an verschiedenen Knochenproben nachweisen, dass Kollagenfasern durch die Strahlungsabsorption in den mineralischen Nanokristallen geschädigt werden", fasst Zaslansky die Ergebnisse der Studie zusammen.

Proteinfasern abgebildet

"Wir haben die Proben unter der Second-Harmonic Generation Laser-Scanning-Mikroskopie untersucht, um die Proteinfasern abzubilden", erklärt Erstautorin Katrein Sauer, die in Zaslanskys Team promoviert. Gemeinsam mit dem HZB-Experten Dr. Ivo Zizak bestrahlte sie Knochenproben von Hechten, Schweinen, Rindern und Mäusen mit genau kalibriertem Röntgenlicht. Die Strahlen hinterließen eine Zerstörungsspur, die in den konfokalen und elektronenmikroskopischen Bildern deutlich sichtbar ist. "Die hochenergetischen Photonen des Röntgenlichts lösen eine Kaskade von Elektronenanregungen aus. Die Ionisierung von Kalzium und Phosphor im Mineral schädigt dann Proteine wie Kollagen im Knochen", sagt Sauer. Der Abbau des Kollagens nimmt mit der Dauer der Bestrahlung zu, zeigt sich aber auch schon bei kurzer Bestrahlung mit hohem Flux.

Zerstörungsfreie Methode?

"Röntgenmethoden gelten in der Materialforschung als zerstörungsfrei, aber zumindest für die Erforschung von Knochengewebe trifft das nicht zu", sagt Zaslansky. "Wir müssen in der medizinischen Grundlagenforschung mehr darauf achten, dass wir nicht gerade die Strukturen beschädigen, die wir eigentlich analysieren wollen." Wie überall in der Medizin, auch wenn es kein lebendes Gewebe und keine DNA zu beschädigen gibt, kommt es also darauf an, eine minimale Dosis zu verwenden, um die Erkenntnisse zu erhalten, die den materiellen Zustand widerspiegeln, ohne Schäden zu verursachen. 

 

Anmerkung:

Die bei BESSY II erzeugte Röntgenstrahlung ist etwa zehntausendmal intensiver als die für medizinische Untersuchungen verwendete Röntgenstrahlung (für die Röntgenaufnahme eines gebrochenen Beins gibt das deutsche Bundesamt für Strahlenschutz eine Dosis von 0,01 Millisievert an). Röntgenmethoden sind für medizinische Untersuchungen äußerst nützlich.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.
  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.