Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien

3D Rekonstruktion der Bildung eines Kupferkristallits in einem Kupfersulfidpartikel (CuS) während der Entladung einer Lithium-CuS-Feststoffbatterie. Die Volumenausdehnung kann dabei zur Bildung von Rissen (blau) führen.

3D Rekonstruktion der Bildung eines Kupferkristallits in einem Kupfersulfidpartikel (CuS) während der Entladung einer Lithium-CuS-Feststoffbatterie. Die Volumenausdehnung kann dabei zur Bildung von Rissen (blau) führen. © K. Dong / HZB

Feststoffbatterien ermöglichen noch höhere Energiedichten als Lithium-Ionenbatterien bei hoher Sicherheit. Einem Team um Prof. Philipp Adelhelm und Dr. Ingo Manke ist es gelungen, eine Feststoffbatterie während des Ladens und Entladens zu beobachten und hochaufgelöste 3D-Bilder zu erstellen. Dabei zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt.

 

Feststoffbatterien (solid-state batteries, SSBs) gelten als aussichtsreiche Batterietechnologie der Zukunft. Gegenüber den aktuellen Lithiumionenbatterien, die in Mobiltelefonen, Laptops und Elektrofahrzeugen eingesetzt werden, versprechen SSBs noch höhere Energiedichten und vor allem auch eine bessere Sicherheit. Denn die leicht brennbaren, flüssigen Elektrolyte von Lithiumionenbatterien werden hier durch einen Feststoff ersetzt, so dass die gesamte Batterie nur aus „festen Materialien“ besteht. Um eine solche Batterie herzustellen, müssen Anode, Kathode und Elektrolyt unter hohem Druck miteinander verpresst werden.

Einer Gruppe aus den Helmholtz-Zentren Berlin (HZB) und Hereon, der Humboldt-Universität zu Berlin und der Bundesanstalt für Materialforschung und -prüfung ist es nun gelungen, die Prozesse innerhalb einer solchen Feststoffbatterie während des Ladens und Entladens zu beobachten. Die Arbeitsgruppen von Prof. Philipp Adelhelm und Dr. Ingo Manke untersuchten das Verhalten von Kupfersulfid, einem natürlich vorkommenden Mineral, als Kathode in einer Feststoffbatterie. Als Anode wurde Lithium eingesetzt. Eine Besonderheit der Batterie ist, dass sich während der Entladung große Kupferkristallite bilden. Mit Hilfe von Röntgentomographie ließ sich diese Bildung der Kristallite eingehend untersuchen. So konnte die Entlade- und Ladereaktion in 3D nachvollzogen und zum ersten Mal die Bewegung der Kathodenpartikel innerhalb der Batterie verfolgt werden. Zudem zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt. „Für die aufwendigen Messungen mussten wir einige Kompromisse eingehen und viele Referenzexperimente durchführen“ erklären Dr. Zhenggang Zhang und Dr. Kang Dong, die gemeinsamen Erstautoren der Publikation. „Die Ergebnisse geben aber detaillierte Einblicke in das Innenleben einer Feststoffbatterie und zeigen, wie sich deren Eigenschaften verbessern lassen“.

Hinweis:

Das Projekt wurde gefördert durch Mittel des Bundesministeriums für Bildung und Forschung (Projekte NASEBER und KAROFEST) und des China Scholarship Council. Am Helmholtz-Zentrum Berlin wird die Erforschung von Feststoffbatterien mittels Tomographie demnächst noch weiter ausgebaut. So fördert das Bundesministerium für Bildung und Forschung den Aufbau eines neuen Tomographielabors (TomoFestBattLab) mit 1,86 Millionen Euro.

P. Adelhelm/I. Manke

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    Nachricht
    24.10.2024
    Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    ETIP PV ist ein Fach-Gremium, das die Europäische Kommission zu Photovoltaik berät. Nun hat der ETIP PV-Lenkungsausschuss einen neuen Vorsitzenden sowie zwei stellvertretende Vorsitzende für die Amtszeit 2024–2026 gewählt. Rutger Schlatmann, Bereichssprecher Solare Energie am HZB und Professor an der HTW Berlin, wurde als Vorsitzender wiedergewählt.