Neue Monochromatoroptiken für den „tender“ Röntgenbereich

Schematische Darstellung des neuartigen Monochromatorkonzepts an der U41-PGM1-Beamline bei BESSY-II basierend auf einem Multilayer beschichteten Sägezahn-Gitter und Planspiegel zur Verbesserung des Photonenflusses im „tender“ Röntgenphotonenenergiebereich (1,5 – 5,0 keV). Der Ausschnitt zeigt ein TEM-Bild des Querschnitts der Cr/C-Multilayer-Gitterstrukturen. Zur besseren Visualisierung der Gitterperiode wurde das Bild horizontal 10-fach komprimiert.

Schematische Darstellung des neuartigen Monochromatorkonzepts an der U41-PGM1-Beamline bei BESSY-II basierend auf einem Multilayer beschichteten Sägezahn-Gitter und Planspiegel zur Verbesserung des Photonenflusses im „tender“ Röntgenphotonenenergiebereich (1,5 – 5,0 keV). Der Ausschnitt zeigt ein TEM-Bild des Querschnitts der Cr/C-Multilayer-Gitterstrukturen. Zur besseren Visualisierung der Gitterperiode wurde das Bild horizontal 10-fach komprimiert. © HZB / Small Methods 2022

Röntgenmikroskopische Aufnahmen einer 400 nm dicken Lamelle, die aus einem modernen Mikrochip extrahiert wurde. Die Einzelbilder stammen aus einer mikrospektroskopischen Energieserie aufgenommen an der Si-K-Absorptionskante. Die NEXAFS-Spektren wurden aus der Energieserie für SiCN- und OSG-Materialien extrahiert. Die entsprechenden Energiepeaks ergeben sich auf Grund der dominierenden Si-C-Bindungen für SiCN und der dominierenden Si-O-Bindungen für OSG-Dielektrika.

Röntgenmikroskopische Aufnahmen einer 400 nm dicken Lamelle, die aus einem modernen Mikrochip extrahiert wurde. Die Einzelbilder stammen aus einer mikrospektroskopischen Energieserie aufgenommen an der Si-K-Absorptionskante. Die NEXAFS-Spektren wurden aus der Energieserie für SiCN- und OSG-Materialien extrahiert. Die entsprechenden Energiepeaks ergeben sich auf Grund der dominierenden Si-C-Bindungen für SiCN und der dominierenden Si-O-Bindungen für OSG-Dielektrika. © HZB / Small Methods 2022

Bislang war es äußerst langwierig, Messungen mit hoher Empfindlichkeit und hoher Ortsauflösung mittels Röntgenlicht im „tender“ Energiebereich von 1,5 - 5,0 keV durchzuführen. Dabei eignet sich genau dieses Röntgenlicht ideal, um Energiematerialien für Batterien oder Katalysatoren, aber auch biologische Systeme zu untersuchen. Dieses Problem hat nun ein Team aus dem HZB gelöst: Die neu entwickelten Monochromatoroptiken erhöhen den Photonenfluss im „tender“ Energiebereich um den Faktor 100 und ermöglichen so hochpräzise Messungen nanostrukturierter Systeme. An katalytisch aktiven Nanopartikeln und Mikrochips wurde die Methode erstmals erfolgreich getestet.

Für die Umstellung auf eine klimaneutrale Energieversorgung werden vielfältigste Materialien für Umwandlungsprozesse benötigt, zum Beispiel katalytisch aktive Materialien und neuartige Elektroden für den Einsatz in Batterien. Viele dieser Materialien besitzen Nanostrukturen, die ihre Funktionalität steigern. Bei der Untersuchung dieser Proben werden spektroskopische Messungen zum Nachweis der chemischen Eigenschaften idealerweise mit Röntgenbildgebung mit hoher Ortsauflösung im Nanobereich kombiniert. Da Schlüsselelemente in diesen Materialien, wie Molybdän, Silizium oder Schwefel, jedoch vorwiegend auf Röntgenstrahlung im sogenannten „tender“ Photonenenergiebereich reagieren, gab es bislang ein großes Problem.

Denn in diesem mittleren „tender“ Energiebereich zwischen weicher und harter Röntgenstrahlung liefern herkömmliche Röntgenoptiken aus Plangitter- oder Kristallmonochromatoren nur sehr geringe Effizienzen. Ein Team aus dem HZB hat dieses Problem nun gelöst: „Wir haben neuartige Monochromatoroptiken entwickelt. Diese Optiken basieren auf einem angepassten, Multilayer beschichteten Sägezahn-Gitter mit einem Planspiegel“, sagt Frank Siewert von der HZB-Abteilung Optik und Strahlrohre. Das neue Monochromatorkonzept steigert den Photonenfluss im „tender“ Röntgenbereich um den Faktor 100 und ermöglicht damit erstmals hochempfindliche spektromikroskopische Messungen mit hohen Auflösungen. „Innerhalb kurzer Zeit konnten wir Messdaten aus NEXAFS-Spektromikroskopiestudien im Nanobereich erhalten, dies haben wir an katalytisch aktiven Nanopartikeln und modernen Mikrochipstrukturen nachgewiesen“ sagt Stephan Werner, Erstautor der Publikation. „Die neue Entwicklung ermöglicht jetzt Experimente, die sonst monatelange Datenerfassung erfordert hätten“, betont Werner.

„Dieser Monochromator wird die Methode der Wahl für die Bildgebung in diesem Röntgenbereich werden, nicht nur an Synchrotronen weltweit, sondern auch an Freien-Elektronen-Lasern und Laborquellen“, sagt Gerd Schneider, der die Abteilung Röntgenmikroskopie am HZB leitet. Er erwartet enorme Auswirkungen auf viele Bereiche der Materialforschung: Studien im „tender“ Röntgenbereich könnten die Entwicklung von Energiematerialien deutlich voranbringen und damit einen Beitrag zu klimaneutralen Lösungen für die Strom- und Energieversorgung leisten.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Science Highlight
    02.12.2024
    Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die ultraschnelle Dynamik dieses Prozesses sichtbar zu machen. Dabei lösen die Röntgenphotonen einen „molekularen Katapulteffekt“ aus: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse, die von einem Katapult abgeschossen werden, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen.
  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.