BESSY II: Einfluss von Protonen auf Wassermoleküle

An BESSY II konnten die spektralen Fingerabdr&uuml;cke von Wassermolek&uuml;le untersucht werden. Das Ergebnis: die elektronische Struktur der drei innersten Wassermolek&uuml;le in einem H<sub>7</sub>O<sub>3</sub><sup>+</sup>-Komplex wird durch das Proton drastisch ver&auml;ndert. Dar&uuml;ber hinaus ver&auml;ndert sich auch die erste Hydrath&uuml;lle aus f&uuml;nf weiteren Wassermolek&uuml;len, die das Proton &uuml;ber sein langreichweitiges elektrisches Feld wahrnimmt.

An BESSY II konnten die spektralen Fingerabdrücke von Wassermoleküle untersucht werden. Das Ergebnis: die elektronische Struktur der drei innersten Wassermoleküle in einem H7O3+-Komplex wird durch das Proton drastisch verändert. Darüber hinaus verändert sich auch die erste Hydrathülle aus fünf weiteren Wassermolekülen, die das Proton über sein langreichweitiges elektrisches Feld wahrnimmt. © MBI

Wie Wasserstoff-Ionen oder Protonen mit ihrer wässrigen Umgebung wechselwirken, hat große Praxisrelevanz, ob in der Technologie von Brennstoffzellen oder in den Lebenswissenschaften. Nun hat ein großes internationales Konsortium an der Röntgenquelle BESSY II diese Frage experimentell im Detail untersucht und neue Effekte entdeckt. So verändert die Anwesenheit eines Protons die elektronische Struktur der drei innersten Wassermoleküle, wirkt sich aber außerdem auch noch darüber hinaus über ein langreichweitiges Feld auf eine Hydrathülle aus fünf weiteren Wassermolekülen aus.

Überschüssige Protonen in Wasser sind komplexe Quantenobjekte mit starken Wechselwirkungen mit dem dynamischen Wasserstoffbrückenbindungsnetz der Flüssigkeit. Diese Wechselwirkungen sind überraschend schwer zu untersuchen. Dabei spielt die so genannte Protonenhydratisierung eine zentrale Rolle beim Energietransport in Wasserstoffbrennstoffzellen und bei der Signalübertragung in Transmembranproteinen. Während die Geometrien und Stöchiometrien sowohl in Experimenten als auch in der Theorie umfassend untersucht wurden, ist die elektronische Struktur dieser hydratisierten Protonenkomplexe nach wie vor ein Rätsel.

Elektronische Struktur von Protonen in Lösung

Eine große Kooperation aus Gruppen des Max-Born-Instituts, der Universität Hamburg, der Universität Stockholm, der Ben-Gurion-Universität und der Universität Uppsala hat nun neue Erkenntnisse über die elektronische Struktur hydratisierter Protonenkomplexe in Lösung gewonnen.

Wechselwirkungen mit kurzer und längerer Reichweite

Mit Hilfe der neuartigen Flatjet-Technologie führten sie an BESSY II röntgenspektroskopische Messungen durch und kombinierten sie mit Infrarotspektralanalyse und Berechnungen. Dadurch ließen sich zwei wesentliche Effekte unterscheiden: Lokale Orbital-Wechselwirkungen bestimmen die kovalente Bindung zwischen dem Proton und benachbarten Wassermolekülen, während Orbital-Energie-Verschiebungen die Stärke des ausgedehnten elektrischen Feldes des Protons messen. Die Ergebnisse legen eine allgemeine Hierarchie für die Protonenhydratation nahe: Das Proton interagiert mit drei Wassermolekülen und bildet einen H7O3+-Komplex. Die Hydratschale dieses Komplexes wird durch das elektrische Feld der positiven Ladung des Protons beeinflusst.

Mögliche Anwendungen

Die neuen Forschungserkenntnisse haben direkte Auswirkungen auf das Verständnis der Protonenhydratation von Protonen in wässriger Lösung über Protonenkomplexe in Brennstoffzellen bis hin zur Wasserstruktur-Hydratationstaschen von Protonenkanälen in Transmembranproteinen.

Eine längere Meldung dazu können Sie auf der Seite des Max-Born-Instituts lesen>

 

MBI/arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.  

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.