Batterien ohne kritische Rohstoffe

Mit operando-Methoden lässt sich beobachten, wie sich solvatisierte Ionen in Batterie-Elektroden einlagern. Die Erkenntnisse sind hilfreich, um alternative Batteriekonzepte zu entwickeln.

Mit operando-Methoden lässt sich beobachten, wie sich solvatisierte Ionen in Batterie-Elektroden einlagern. Die Erkenntnisse sind hilfreich, um alternative Batteriekonzepte zu entwickeln. © G. A. Ferrero

Der Markt für wiederaufladbare Batterien wächst schnell, aber die benötigten Rohstoffe sind begrenzt. Eine Alternative könnten zum Beispiel Natrium-Ionen-Batterien sein. Eine gemeinsame Forschergruppe von HZB und Humboldt-Universität zu Berlin hat dafür neue Kombinationen von Elektrolytlösungen und Elektrodenmaterialien untersucht.

"Im Gegensatz zu Lithium-Ionen-Batterien, die auf der Speicherung von Lithium-Ionen in der positiven und negativen Elektrode der Batterie basieren, arbeiten wir mit Natrium-Ionen, wie sie auch in billigem Kochsalz vorkommen. Dazu speichern wir die Natrium-Ionen zusammen mit ihrer Solvathülle, also Lösungsmittelmolekülen aus der Elektrolytlösung, die die beiden Elektroden trennen. Damit lassen sich völlig neue Speicherreaktionen realisieren", erklärt Prof. Philipp Adelhelm, der die Forschungsgruppe "operando battery analysis" leitet, die 2020 gemeinsam von Humboldt-Universität und Helmholtz-Zentrum Berlin gegründet wurde.

Diese Einlagerung von Ionen in Begleitung ihrer Solvatationshülle in einem Kristallgitter bezeichnet man als Ko-Interkalation. Bislang war dieses Konzept auf die negative Elektrode der Natrium-Ionen-Batterie beschränkt. Nun ist es dem Team um Adelhelm gelungen, das Konzept auf die positive Elektrode der Batterie auszuweiten. Dr. Guillermo A. Ferrero, Erstautorin der Veröffentlichung, erklärt: "Mit Titandisulfid und Graphit haben wir zum ersten Mal zwei Materialien kombiniert, die während des Ladens und Entladens der Batterie dasselbe Lösungsmittel aufnehmen und abgeben". Mit Operando-Messungen  am Röntgen-Corelab des HZB (LIMAX 160) ließen sich Veränderungen im Material während des Ladens und Entladens beobachten und der Mechanismus der Ko-Interkalation im Inneren der Batterie analysieren. Mit diesem  Wissen gelang es dem Team, eine Batterie zu realisieren, bei der die Ko-Interkalation von Lösungsmittelmolekülen an beiden Elektroden reversibel ist.

"Wir beginnen gerade erst damit, Ko-Interkalationsbatterien zu verstehen. Es gibt einige Vorteile, die wir uns vorstellen können", erklärt Dr. Katherine A. Mazzio vom HZB: Der Prozess der Ko-Interkalation könnte die Effizienz verbessern, indem er eine bessere Leistung bei niedrigen Temperaturen ermöglicht. Er könnte auch genutzt werden, um alternative Zellkonzepte zu verbessern, wie zum Beispiel die Verwendung mehrwertiger Ionen anstelle der Speicherung von Li+ oder Na+, die besonders empfindlich auf die Solvatationshülle reagieren.

Hinweis: Dieses Projekt wurde vom Europäischen Forschungsrat (ERC) im Rahmen des Forschungs- und Innovationsprogramms Horizon 2020 der Europäischen Union gefördert (Grant Agreement No. [864698], SEED).

HU Berlin/ arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.