Spintronik: Ein neues Werkzeug an BESSY II zur Untersuchung der Chiralität

Das Bild illustriert den Haupteffekt, der mit dem neu entwickelten Instrument ALICE II an BESSY II gemessen wurde: Ein zirkular polarisierter weicher R&ouml;ntgenstrahl wird an einem Kristall gestreut, der eine helikale magnetische Ordnung aufweist. Dies f&uuml;hrt zu zwei Streustrahlen unterschiedlicher Intensit&auml;t.</p> <p>

Das Bild illustriert den Haupteffekt, der mit dem neu entwickelten Instrument ALICE II an BESSY II gemessen wurde: Ein zirkular polarisierter weicher Röntgenstrahl wird an einem Kristall gestreut, der eine helikale magnetische Ordnung aufweist. Dies führt zu zwei Streustrahlen unterschiedlicher Intensität.

© F. Radu/HZB

Informationen über komplexe magnetische Strukturen sind entscheidend für das Verständnis und die Entwicklung spintronischer Materialien. Jetzt steht bei BESSY II ein neues Instrument namens ALICE II zur Verfügung. Es ermöglicht magnetische Röntgenstreuung im reziproken Raum mit Hilfe eines neuen großflächigen Detektors. Ein Team des HZB und der Technischen Universität München hat die Leistungsfähigkeit von ALICE II demonstriert und helikale und konische magnetische Zustände in einem  Einkristall mit Skyrmionen analysiert. Das neue Instrument steht nun auch Messgästen an BESSY II zur Verfügung.

ALICE II wurde von Dr. Florin Radu und der Konstruktionsabteilung am HZB in enger Zusammenarbeit mit Prof. Christian Back von der Technischen Universität München und seiner technischen Unterstützung konzipiert und gebaut. "ALICE II verfügt über eine einzigartige Fähigkeit: Es emöglicht magnetische Röntgenstreuung im reziproken Raum mit einem neuen großflächigen Detektor bis zu den höchsten erlaubten Reflexionswinkeln", erklärt Radu. Um die Leistungsfähigkeit des neuen Instruments zu demonstrieren, untersuchten die Wissenschaftler eine polierte Probe von Cu2OSeO3.

Mott-Isolator untersucht

Cu2OSeO3 ist ein Mott-Isolator mit einer kubischen Kristallstruktur, die jedoch keine Inversionssymmetrie aufweist. Dadurch kommt es zu einer spiralförmigen magnetischen Ordnung: Die magnetischen Spins drehen sich im oder gegen den Uhrzeigersinn in Bezug auf die Ausbreitungsrichtung. Das magnetische Ion ist Kupfer (Cu), und die Chiralität der magnetischen Struktur kann durch äußere Reize nicht umgekehrt werden. Die hohe Probenqualität ist dabei von entscheidender Bedeutung und wurde von Dr. Aisha Aqueel sichergestellt.

Einblicke in Spin-Texturen

Mit zirkular polarisierter Röntgenstrahlung konnte die Gruppe helikale und konische magnetische Modulationen als Satellitenreflexionen beobachten. "Mehr noch: Die Chiralitätsinformation der zugrundeliegenden Spin-Texturen ist als dichroitische Intensität kodiert", betont Radu. Dies zeigt einen neuen Weg, um chirale und polare magnetische Texturen zu untersuchen, und zwar mit höchster räumlicher Auflösung und auf sehr kurzen Zeitskalen, wie sie für Synchrotron-Röntgenexperimente typisch sind.

Hinweis: Das Projekt wurde vom BMBF und HZB gefördert.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.
  • Perowskit-Solarzellen: Protokolle für Reproduzierbarkeit und Vergleichbarkeit
    Nachricht
    22.10.2024
    Perowskit-Solarzellen: Protokolle für Reproduzierbarkeit und Vergleichbarkeit
    Zehn Teams am Helmholtz-Zentrum Berlin bauen eine langfristige internationale Allianz auf, um gemeinsam Verfahren zu entwickeln, die die Reproduzierbarkeit von Perowskit-Materialien sicherstellen. Das Projekt TEAM PV wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.
  • HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Nachricht
    10.10.2024
    HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Ein HZB-Team hat mit Freiberg Instruments einen innovativen Monochromator entwickelt, der nun auf den Markt kommt. Das Gerät ermöglicht es, die optoelektronischen Eigenschaften von Halbleitermaterialien kontinuierlich und rasch mit hoher Präzision zu erfassen, und zwar über einen breiten Spektralbereich vom nahen Infrarot bis ins tiefe Ultraviolett. Dabei wird Streulicht effizient unterdrückt. Die Innovation ist für die Entwicklung neuer Materialien interessant und auch einsetzbar, um industrielle Prozesse besser zu kontrollieren.