Dynamik in 1D-Spinketten neu aufgeklärt

Die Daten aus der Neutronenstreuung (links) geben Auskunft über absorbierte Energien im reziproken Raum. Mit der neuen Auswertung war es möglich, Aussagen über neue magnetische Zustände und deren zeitliche Entwicklung im Realraum zu erhalten (rechts). Die Farben Blau und Rot kennzeichnen die beiden entgegengesetzten Spinrichtungen.

Die Daten aus der Neutronenstreuung (links) geben Auskunft über absorbierte Energien im reziproken Raum. Mit der neuen Auswertung war es möglich, Aussagen über neue magnetische Zustände und deren zeitliche Entwicklung im Realraum zu erhalten (rechts). Die Farben Blau und Rot kennzeichnen die beiden entgegengesetzten Spinrichtungen. © HZB

Die Neutronenstreuung gilt als die Methode der Wahl, um magnetische Strukturen und Anregungen in Quantenmaterialien zu untersuchen. Nun hat die Auswertung von Messdaten aus den 2000er Jahren mit neuen Methoden erstmals wesentlich tiefere Einblicke in ein Modellsystem - die 1D-Heisenberg-Spinketten - geliefert. Damit steht ein neuer Werkzeugkasten für die Erforschung zukünftiger Quantenmaterialien zur Verfügung.

Kalium-Kupfer-Fluorid KCuF3 gilt als das einfachste Modellmaterial für eine sogenannte Heisenberg-Quantenspinkette: Die Spins wechselwirken mit ihren Nachbarn antiferromagnetisch entlang einer einzigen Richtung (eindimensional) und unterliegen den Gesetzen der Quantenphysik.

"Wir haben die Messungen an diesem einfachen Modellsystem an der Spallationsneutronenquelle ISIS schon vor einiger Zeit durchgeführt, als ich noch Postdoc war", sagt Prof. Bella Lake, die das HZB-Institut Quantenphänomene in neuen Materialien leitet. "Unsere Ergebnisse, die wir 2005, 2013 und erneut 2021 veröffentlicht haben, haben wir  jeweils mit neuen Theorien verglichen", sagt sie. Mit neuen und erweiterten Methoden ist es einem Team um Prof. Alan Tennant und Dr. Allen Scheie nun gelungen, deutlich tiefere Einblicke in die Wechselwirkungen zwischen den Spins und deren räumliche und zeitliche Entwicklung zu gewinnen.

Mitreissende Spin-Dynamik

"Bei der Neutronenstreuung stößt man einen Spin so an, dass er umkippt. Dadurch entsteht eine Dynamik, ähnlich wie ein Kielwasser, wenn ein Schiff durch das Wasser fährt, das seine Nachbarn und deren Nachbarn beeinflussen kann", erklärt Tennant.

"Neutronenstreuungsdaten werden als Funktion der Energie und des Wellenvektors gemessen", sagt Scheie. "Unser Durchbruch bestand darin, die räumliche und zeitliche Entwicklung der Spins mit mathematischen Methoden wie der Back-Fourier-Transformation abzubilden." In Kombination mit anderen theoretischen Methoden erhielten die Physiker Informationen über die Wechselwirkungen zwischen den Spinzuständen und deren Dauer und Reichweite sowie Einblicke in die sogenannte Quantenkohärenz.

Neuer Werkzeugkasten

Die Arbeit bietet damit einen neuen Werkzeugkasten für die Analyse von Neutronenstreudaten, um das Verständnis von technologisch relevanten Quantenmaterialien zu vertiefen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.