Dynamik in 1D-Spinketten neu aufgeklärt

Die Daten aus der Neutronenstreuung (links) geben Auskunft über absorbierte Energien im reziproken Raum. Mit der neuen Auswertung war es möglich, Aussagen über neue magnetische Zustände und deren zeitliche Entwicklung im Realraum zu erhalten (rechts). Die Farben Blau und Rot kennzeichnen die beiden entgegengesetzten Spinrichtungen.

Die Daten aus der Neutronenstreuung (links) geben Auskunft über absorbierte Energien im reziproken Raum. Mit der neuen Auswertung war es möglich, Aussagen über neue magnetische Zustände und deren zeitliche Entwicklung im Realraum zu erhalten (rechts). Die Farben Blau und Rot kennzeichnen die beiden entgegengesetzten Spinrichtungen. © HZB

Die Neutronenstreuung gilt als die Methode der Wahl, um magnetische Strukturen und Anregungen in Quantenmaterialien zu untersuchen. Nun hat die Auswertung von Messdaten aus den 2000er Jahren mit neuen Methoden erstmals wesentlich tiefere Einblicke in ein Modellsystem - die 1D-Heisenberg-Spinketten - geliefert. Damit steht ein neuer Werkzeugkasten für die Erforschung zukünftiger Quantenmaterialien zur Verfügung.

Kalium-Kupfer-Fluorid KCuF3 gilt als das einfachste Modellmaterial für eine sogenannte Heisenberg-Quantenspinkette: Die Spins wechselwirken mit ihren Nachbarn antiferromagnetisch entlang einer einzigen Richtung (eindimensional) und unterliegen den Gesetzen der Quantenphysik.

"Wir haben die Messungen an diesem einfachen Modellsystem an der Spallationsneutronenquelle ISIS schon vor einiger Zeit durchgeführt, als ich noch Postdoc war", sagt Prof. Bella Lake, die das HZB-Institut Quantenphänomene in neuen Materialien leitet. "Unsere Ergebnisse, die wir 2005, 2013 und erneut 2021 veröffentlicht haben, haben wir  jeweils mit neuen Theorien verglichen", sagt sie. Mit neuen und erweiterten Methoden ist es einem Team um Prof. Alan Tennant und Dr. Allen Scheie nun gelungen, deutlich tiefere Einblicke in die Wechselwirkungen zwischen den Spins und deren räumliche und zeitliche Entwicklung zu gewinnen.

Mitreissende Spin-Dynamik

"Bei der Neutronenstreuung stößt man einen Spin so an, dass er umkippt. Dadurch entsteht eine Dynamik, ähnlich wie ein Kielwasser, wenn ein Schiff durch das Wasser fährt, das seine Nachbarn und deren Nachbarn beeinflussen kann", erklärt Tennant.

"Neutronenstreuungsdaten werden als Funktion der Energie und des Wellenvektors gemessen", sagt Scheie. "Unser Durchbruch bestand darin, die räumliche und zeitliche Entwicklung der Spins mit mathematischen Methoden wie der Back-Fourier-Transformation abzubilden." In Kombination mit anderen theoretischen Methoden erhielten die Physiker Informationen über die Wechselwirkungen zwischen den Spinzuständen und deren Dauer und Reichweite sowie Einblicke in die sogenannte Quantenkohärenz.

Neuer Werkzeugkasten

Die Arbeit bietet damit einen neuen Werkzeugkasten für die Analyse von Neutronenstreudaten, um das Verständnis von technologisch relevanten Quantenmaterialien zu vertiefen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.