Alexander Gray kommt als Humboldt-Fellow ans HZB
Alexander Gray (hier in seinem Labor an der Temple Universität in Philadelphia, USA) will die Zusammenarbeit mit dem Team von Florian Kronast an BESSY II verstärken. © Privat
Alexander Gray von der Temple University in Philadelphia, USA, arbeitet gemeinsam mit dem HZB-Physiker Florian Kronast an der Erforschung neuartiger 2D-Quantenmaterialien an BESSY II. Mit dem Stipendium der Alexander von Humboldt-Stiftung kann er diese Zusammenarbeit nun vertiefen. Bei BESSY II will er tiefenaufgelöste röntgenmikroskopische und -spektroskopische Methoden weiterentwickeln, um 2D-Quantenmaterialien und Bauelemente für neue Informationstechnologien zu untersuchen.
Topologische Isolatoren und Weyl-Semimetalle gehören zu den spannendsten Materialklassen für Quantenbauelemente. Sie zeichnen sich dadurch aus, dass sie an den Oberflächen und Grenzflächen andere (elektronische und magnetische) Eigenschaften haben als im Volumen. Alexander Gray ist Experte auf diesem Gebiet und kommt häufig für kurze Messperioden zu BESSY II, wo er mit Florian Kronast zusammenarbeitet.
Als Stipendiat der Alexander von Humboldt-Stiftung kann der amerikanische Physiker nun regelmäßige Gastaufenthalte am HZB im Team von Florian Kronast und am Forschungszentrum Jülich im Team von Claus Schneider finanzieren. "Mit dem Humboldt-Stipendium haben wir mehr Zeit, um zu untersuchen, wie das Zusammenspiel von Oberflächen-, Grenzflächen- und Volumeneigenschaften in Quantenmaterialien zu neuartigen Phänomenen führt, die auch Anwendungen als Bauelemente ermöglichen", sagt er.
Gray leitet ein Team an der Temple University in Philadelphia und wird auch seine Studenten zu BESSY II schicken. "Wir wollen neue Techniken entwickeln, um die elektronischen und magnetischen Eigenschaften von 2D-Quantenmaterialien und Quantengeräten zu analysieren", umreißt er seine Ziele. Bei BESSY II wird Gray zu diesem Zweck vor allem die tiefenaufgelöste Stehwellen-Photoemissionsmikroskopie weiterentwickeln. Kronast, Gray und sein ehemaliger Doktorvater Chuck Fadley haben diese Methode bereits mit der Anregung durch stehende Röntgenwellen kombiniert, um eine bessere Tiefenauflösung zu erreichen (SW-PEEM).
Ab Mitte August plant Alexander Gray den ersten Aufenthalt an BESSY II. Er freut sich nicht nur auf Messungen und Gespräche, sondern auch auf die typische Berliner Atmosphäre: "Die Menschen sind sehr offen und freundlich, und die berühmte "Berliner Schnauze" ist mir noch nie begegnet. Ich denke, wenn ich eines Tages so eine typische raue Antwort erlebe, habe ich sie vielleicht verdient." Mit dieser humorvollen Einstellung wird sein Aufenthalt in Berlin sicher in jeder Hinsicht ein Erfolg.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23930;sprache=de
- Link kopieren
-
Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
-
Katalyseforschung mit dem Röntgenmikroskop an BESSY II
Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
-
BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.