Spintronik: Germanium-Tellurid zeigt ungewöhnliches Verhalten

Links: Elektronische Struktur von GeTe, aufgenommen an BESSY-II, zeigt die Banddispersionen von Bulk- (BS) und Oberflächen-Rashba-Zuständen (SS1, SS2) im Gleichgewicht. Mitte: Vergrößerung des Bereichs der Rashba-Zustände, gemessen mit 6 eV-Photonen des fs-Lasers. Rechts: Entsprechende Dispersionen außerhalb des Gleichgewichts nach Anregung durch den Wärmepuls.

Links: Elektronische Struktur von GeTe, aufgenommen an BESSY-II, zeigt die Banddispersionen von Bulk- (BS) und Oberflächen-Rashba-Zuständen (SS1, SS2) im Gleichgewicht. Mitte: Vergrößerung des Bereichs der Rashba-Zustände, gemessen mit 6 eV-Photonen des fs-Lasers. Rechts: Entsprechende Dispersionen außerhalb des Gleichgewichts nach Anregung durch den Wärmepuls.

Aufgrund seines gigantischen Rashba-Effekts gilt Germaniumtellurid (GeTe) als guter Kandidat für den Einsatz in spintronischen Bauelementen. Nun hat ein Team am HZB ein weiteres faszinierendes Phänomen in GeTe entdeckt. Dafür untersuchten die Forschenden die elektronische Reaktion auf thermische Anregung der Proben. Überraschenderweise verlief die anschließende Relaxation ganz anders als bei herkömmlichen Halbmetallen. Durch die gezielte Steuerung von Details der elektronischen Struktur könnten in dieser Materialklasse neue Funktionalitäten erschlossen werden.  

In den letzten Jahrzehnten hat die Komplexität der auf Silizium basierenden Technologien exponentiell zugenommen, getrieben von der wachsenden Nachfrage nach immer leistungsfähigeren Geräten. Das Siliziumzeitalter neigt sich jedoch seinem Ende zu.  Mit zunehmender Miniaturisierung werden unerwünschte Quanteneffekte und Wärmeverluste zu einem immer größeren Hindernis. Weitere Fortschritte erfordern neue Materialien, die Quanteneffekte nutzen, anstatt sie zu vermeiden. Spintronische Bauelemente, die die Spins der Elektronen und nicht deren Ladung nutzen, versprechen energieeffizientere Bauelemente mit deutlich verbesserten Schaltzeiten und völlig neuen Funktionen.

Spin-Orbit-Kopplung als Voraussetzung

Kandidaten für spintronische Bauelemente sind Halbleitermaterialien, bei denen die Spins mit der Orbitalbewegung der Elektronen gekoppelt sind. Dieser so genannte Rashba-Effekt tritt in einer Reihe von nichtmagnetischen Halbleitern und halbmetallischen Verbindungen auf und ermöglicht es unter anderem, die Spins im Material durch ein elektrisches Feld zu manipulieren. Germaniumtellurid (GeTe) zeigt einen der größten Rashba-Effekte auf, die in Halbleitern beobachtet wurden.

Wärmepuls, dann Analyse an BESSY II

Bislang wurde GeTe jedoch nur im thermischen Gleichgewicht untersucht. Nun hat ein Team um den HZB-Physiker Jaime-Sánchez-Barriga an BESSY II erstmals gezielt auf einen Nicht-Gleichgewichtszustand in GeTe-Proben zugegriffen und detailliert untersucht, wie sich das Gleichgewicht in dem Material binnen billionstel Sekunden (10-12 Sekunden) wiederherstellt. Dabei stießen die Physiker auf ein neues und unerwartetes Phänomen.

Zunächst wurde die Probe mit einem Infrarotpuls angeregt und dann mit hoher Zeitauflösung mittels winkelaufgelöster Photoemissionsspektroskopie (tr-ARPES) gemessen. "Zum ersten Mal konnten wir alle Phasen der Anregung, Thermalisierung und Relaxation auf ultrakurzen Zeitskalen beobachten und charakterisieren", sagt Sánchez-Barriga.

Unerwartetes Phänomen

Das wichtigste Ergebnis: "Die Daten zeigen, dass das thermische Gleichgewicht zwischen dem Elektronensystem und dem Kristallgitter auf höchst unkonventionelle und kontraintuitive Weise wiederhergestellt wird", erklärt einer der Hauptautoren, Oliver Clark. 

In einfachen metallischen Systemen wird das thermische Gleichgewicht in erster Linie durch die Wechselwirkung zwischen Elektronen untereinander und zwischen Elektronen und den Gitterschwingungen im Kristall (Phononen) hergestellt. Dieser Prozess verlangsamt sich mit sinkenden Temperaturen immer mehr. Bei Germaniumtellurid beobachteten die Physiker jedoch ein entgegengesetztes Verhalten: Je niedriger die Gittertemperatur der Probe ist, desto schneller stellt sich das thermische Gleichgewicht nach der Anregung mit dem Wärmeimpuls ein.  "Das war sehr überraschend", sagt Sánchez-Barriga.

Berechnungen helfen bei der Interpretation

Mit theoretischen Berechnungen im Rahmen des Boltzmann-Ansatzes, die von einem Team der Technischen Universität Nanyang durchgeführt wurden, konnten sie die zugrunde liegenden mikroskopischen Prozesse interpretieren und drei verschiedene Thermalisierungsprozesse unterscheiden: Wechselwirkungen zwischen Elektronen innerhalb desselben Bandes, in verschiedenen Bändern und Elektronen mit Phononen.

Neue Funktionalitäten denkbar

Es scheint, dass die Wechselwirkung zwischen Elektronen die Dynamik dominiert und mit abnehmender Gittertemperatur deutlich schneller wird. "Dies kann durch den Einfluss der Rashba-Aufspaltung auf die Stärke der fundamentalen elektronischen Wechselwirkungen erklärt werden. Dieses Verhalten ist auf alle Rashba-Halbleiter anwendbar", sagt Sánchez-Barriga: "Die vorliegenden Ergebnisse sind wichtig für zukünftige Anwendungen von Rashba-Halbleitern und deren Anregungen in der ultraschnellen Spintronik."

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.