Innovative Katalysatoren: Ein Überblicksbeitrag

Die Illustration veranschaulicht die Aufspaltung von Wasser in Sauerstoff und Wasserstoff mit Hilfe von innovativen Elektrokatalysatoren. Wasserstoff kann als Brennstoff und chemischer Energiespeicher genutzt werden.

Die Illustration veranschaulicht die Aufspaltung von Wasser in Sauerstoff und Wasserstoff mit Hilfe von innovativen Elektrokatalysatoren. Wasserstoff kann als Brennstoff und chemischer Energiespeicher genutzt werden. © Dr. Ziliang Chen

Grüner Wasserstoff benötigt hocheffiziente (Elektro-)Katalysatoren. Auch für die chemische Industrie, die Düngemittelproduktion und andere Wirtschaftszweige sind Katalysatoren unerlässlich. Neben den Übergangsmetallen sind inzwischen eine Vielzahl anderer metallischer oder nichtmetallischer Elemente in den Fokus der Forschung gerückt. In einem Übersichtsartikel geben Experten des CatLab am HZB und der Technischen Universität Berlin einen Überblick über den aktuellen Wissensstand und einen Ausblick auf zukünftige Forschungsfragen.

Grüner Wasserstoff ist ein wichtiger Baustein in einem klimaneutralen Energiesystem. Er wird durch elektrolytische Spaltung von Wasser mit Wind- oder Sonnenenergie erzeugt und speichert diese Energie in chemischer Form. Doch derzeit ist die Herstellung von grünem Wasserstoff noch nicht wirtschaftlich und effizient genug. Der Schlüssel zur Lösung dieses Problems liegt in der Entwicklung innovativer Elektrokatalysatoren, die nicht nur mit hohem Wirkungsgrad arbeiten, sondern auch langlebig, verfügbar und kostengünstig sein sollten.

Neben den Übergangsmetallen, deren katalytische Eigenschaften bereits gut erforscht sind, sind nun auch Elemente aus den Gruppen der Alkalimetalle, Erdalkalimetalle, Seltenerdmetalle oder Metalloide in den Fokus der Aufmerksamkeit gerückt. Einige Elemente aus diesen Gruppen könnten in Kombination mit Übergangsmetallen die Leistung von Katalysatoren erheblich verbessern und zur Entwicklung von Hochleistungs-Elektrokatalysatoren der nächsten Generation beitragen. Viele der Prozesse, die während der Elektrokatalyse bei der Bildung von Sauerstoff oder Wasserstoff ablaufen, sind jedoch noch nicht im Detail verstanden.

In einem Übersichtsartikel führt nun ein internationales Expertenteam durch dieses spannende Forschungsgebiet und skizziert die nächsten Schritte, die die Katalysatorforschung nehmen könnte. "Dieser Beitrag fasst den aktuellen Wissensstand über unkonventionelle Materialien  zusammen und macht ihn für eine breitere Wissenschaftsgemeinschaft zugänglich. Darüber hinaus beschreibt er ausführlich die Rolle dieser Metalle bei der Elektrokatalyse, sowie die Modifizierungsstrategie, die man in Betracht ziehen könnte, wenn man Elektrokatalysatoren einsetzen will, die nicht auf Edelmetallen basieren. Wir hoffen, mit diesem Übersichtsartikel die Forschung und Entwicklung an innovativen Katalysatormaterialien erheblich zu beschleunigen", betont Dr. Prashanth W. Menezes.

 

Hinweis: Dr. Prashanth W. Menezes ist Leiter der Gruppe Materialchemie für Dünnschichtkatalyse am HZB im CatLab-Projekt und Leiter der Gruppe Anorganische Materialien an der TU Berlin.

Seine Twitterhandle lautet @EnergycatLab

Zu CatLab: Gemeinsam mit dem Fritz-Haber-Institut der Max-Planck-Gesellschaft baut das HZB das Katalyse-Labor CatLab auf, das die Forschung an innovativen Katalysatoren beschleunigen soll.  CatLab wird vom Bundesministerium für Bildung und Forschung gefördert.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalysatorplattform verbessert das Verständnis von arbeitenden Katalysatoren
    Science Highlight
    11.12.2024
    Katalysatorplattform verbessert das Verständnis von arbeitenden Katalysatoren
    Eine neuartige Katalysatorplattform, bekannt als Laterally Condensed Catalysts (LCC), wurde entwickelt, um das Design und die Analyse der funktionalen Schnittstelle zu ermöglichen, die die aktive Phase mit ihrer Unterstützung verbindet. Diese Schnittstelle beeinflusst nicht nur die chemischen Eigenschaften der reaktiven Schnittstelle, sondern kontrolliert auch deren Stabilität und damit die Nachhaltigkeit der katalytischen Materialien. Die Entwicklung wurde wesentlich durch die Anwendung von operando-Spektroskopie am Synchrotron BESSY II unterstützt, die es ermöglichte, die dynamischen Prozesse und Strukturen unter Reaktionsbedingungen zu beobachten und zu verstehen.
  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Science Highlight
    02.12.2024
    Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die ultraschnelle Dynamik dieses Prozesses sichtbar zu machen. Dabei lösen die Röntgenphotonen einen „molekularen Katapulteffekt“ aus: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse, die von einem Katapult abgeschossen werden, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen.