Grüne Informationstechnologien: Supraleitung trifft Spintronik

In diesem Materialsystem wurde die langreichweitige Josephson-Kopplung nachgewiesen.&nbsp; Supraleitende YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub>-Regionen (gelb) sind durch einen halbmetallischen La<sub>2/3</sub>Sr<sub>1/3</sub>MnO<sub>3</sub>-Ferromagneten (gr&uuml;n) getrennt.

In diesem Materialsystem wurde die langreichweitige Josephson-Kopplung nachgewiesen.  Supraleitende YBa2Cu3O7-Regionen (gelb) sind durch einen halbmetallischen La2/3Sr1/3MnO3-Ferromagneten (grün) getrennt. © Nature Materials 2021: 10.1038/s41563-021-01162-5

Ein internationales Team hat eine Kopplung zwischen zwei supraleitenden Regionen nachgewiesen, die durch ein ferromagnetisches Material von einem Mikrometer Breite getrennt sind. Dieser makroskopische Quanteneffekt ist als Josephson-Effekt bekannt und erzeugt einen Strom aus supraleitenden Cooper-Paaren innerhalb der ferromagnetischen Region. Messungen an BESSY II zeigten, dass der Spin der Cooper-Elektronen gleich ist. Die Ergebnisse weisen den Weg für supraleitende spintronische Anwendungen mit sehr geringem Energiebedarf, bei denen spinpolarisierte Ströme durch Quantenkohärenz geschützt sind.

Wenn supraleitende Bereiche durch einen Streifen nicht-supraleitenden Materials getrennt sind, kann ein besonderer Quanteneffekt auftreten, der beide Bereiche koppelt: Der Josephson-Effekt. Handelt es sich bei dem Material um einen halbmetallischen Ferromagneten, ergeben sich neuartige Implikationen für spintronische Anwendungen.

Langreichweitiger Quanteneffekt

Ein internationales Team hat nun erstmals ein Materialsystem entworfen, das einen ungewöhnlich weitreichenden Josephson-Effekt aufweist: Hier sind Bereiche aus supraleitendem YBa2Cu3O7 durch einen Bereich aus halbmetallischem, ferromagnetischem Manganit (La2/3Sr1/3MnO3) von einem Mikrometer Breite getrennt.

Mit Hilfe von Magneto-Transportmessungen konnten die Forscher*innen nachweisen, dass ein supraleitender Strom durch das Manganit zirkuliert - hervorgerufen durch die Kopplung zwischen den beiden supraleitenden Bereichen als Manifestation eines Josephson-Effekts mit makroskopisch großer Reichweite.

Seltene Triplett-Supraleitung

Darüber hinaus erforschten sie eine weitere interessante Eigenschaft mit tiefgreifenden Konsequenzen für spintronische Anwendungen. In Supraleitern paaren sich Elektronen zu sogenannten Cooper-Paaren. In der überwiegenden Mehrheit der supraleitenden Materialien bestehen diese Paare aus Elektronen mit entgegengesetztem Spin, um das magnetische Austauschfeld zu minimieren, das die Supraleitung schwächt. Im hier verwendeten ferromagnetischen Material kann jedoch nur ein Elektron mit einem Spin zirkulieren. Die Tatsache, dass in diesem Material ein Suprastrom nachgewiesen wurde, bedeutet, dass die Cooper-Paare dieses Suprastroms aus Elektronen mit dem gleichen Spin bestehen müssen. Diese so genannte "Triplett"-Supraleitung ist extrem selten.

Magnetische Domänen an BESSY II kartiert

"An der XMCD-PEEM-Station bei BESSY II haben wir die magnetischen Domänen innerhalb des Manganit-Streifens kartiert und gemessen. Wir haben weite Bereiche beobachtet, die homogen magnetisiert sind und die supraleitenden Bereiche miteinander verbinden. In diesen können sich Triplett-Spinpaare frei ausbreiten", erklärt Dr. Sergio Valencia Molina, HZB-Physiker, der die Messungen an BESSY II betreut hat. 

Stabilität durch Quantenkohärenz

Supraleitende Ströme fließen ohne Widerstand, was sie für Anwendungen mit geringem Stromverbrauch sehr interessant macht. Im vorliegenden Fall besteht dieser Strom aus Elektronen mit gleichen Spins. Solche spinpolarisierten Ströme könnten in neuartigen supraleitenden spintronischen Anwendungen für den Transport über große Entfernungen und das Lesen/Schreiben von Informationen verwendet werden. Die makroskopische Quantenkohärenz des Josephson-Effekts sorgt dabei für Stabilität.

Ein neues Bauelement, das aus supraleitenden und ferromagnetischen Komponenten besteht, würde daher Möglichkeiten für die supraleitende Spintronik eröffnen und neue Perspektiven für das Quantencomputing aufzeigen.

Kooperationspartner:

An dieser internationalen Zusammenarbeit (Spanien, Frankreich, USA, Russland und Deutschland) unter der Leitung von Prof. Jacobo Santamaria von der Complutense Universität Madrid (Spanien) und Javier Villegas von der 2Unité Mixte de Physique CNRS/THALES (Frankreich) war die Abteilung Spin und Topologie in Quantenmaterialien am HZB beteiligt. 

Finanzierung: To2Dox, ERA-NET, EU Horizon 2020

red.

Das könnte Sie auch interessieren

  • Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Science Highlight
    27.01.2023
    Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Perowskit-Halbleiter versprechen hocheffiziente und preisgünstige Solarzellen. Allerdings reagiert das halborganische Material sehr empfindlich auf Temperaturunterschiede, was im normalen Außeneinsatz rasch zu Ermüdungsschäden führen kann. Gibt man jedoch eine dipolare Polymerverbindung zur Vorläuferlösung des Perowskits hinzu, verbessert sich die Stabilität enorm. Dies zeigt nun ein internationales Team unter der Leitung von Antonio Abate, HZB, im Fachjournal Science. Die so hergestellten Solarzellen erreichen Wirkungsgrade von deutlich über 24 Prozent, die selbst bei dramatischen Temperaturschwankungen zwischen -60 und +80 Grad Celsius über hundert Zyklen kaum sinken. Das entspricht etwa einem Jahr im Außeneinsatz.

  • HZB-Physiker folgt Ruf nach Südkorea
    Nachricht
    25.01.2023
    HZB-Physiker folgt Ruf nach Südkorea
    Seit 2016 hat der Beschleunigerphysiker Ji-Gwang Hwang am HZB in der Abteilung Speicherring- und Strahlphysik geforscht. In mehreren Projekten hat er wichtige Beiträge zur Strahldiagnostik geleistet. Nun kehrt er in seine Heimat Südkorea zurück, als Professor für Physik an der Gangneung-Wonju National University.
  • Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Science Highlight
    18.01.2023
    Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Ein Wissenschaftsteam unter Leitung von Forschenden des Max-Born-Instituts in Berlin, des Helmholtz-Zentrums Berlin, des Brookhaven National Laboratory (USA) und des Massachusetts Institute of Technology (USA) hat eine neue Methode entwickelt, um mit starken Röntgenquellen Videos von Fluktuationen in Materialien auf der Nanoskala aufzunehmen. Die Methode ist in der Lage, scharfe, hochauflösende Bilder zu machen, ohne das Material durch zu starke Belichtung zu beeinträchtigen. Dafür entwickelten die Wissenschaftler*innen einen Algorithmus, der in unterbelichteten Aufnahmen Muster erkennen kann. Im Fachjournal Nature beschreiben sie die Methode des Coherent Correlation Imaging (CCI) und stellen Ergebnisse für Proben aus dünnen magnetischen Schichten vor.