„Grüne“ Chemie: Einblicke in die mechanochemische Synthese an BESSY II

Fein vermahlene Pulver können auch ohne Lösungsmittel  zum gewünschten Produkt reagieren. Das ist der Ansatz der Mechanochemie.

Fein vermahlene Pulver können auch ohne Lösungsmittel  zum gewünschten Produkt reagieren. Das ist der Ansatz der Mechanochemie. © F. Emmerling/BAM

In einer Kugelmühle werden die Reagenzien vermahlen, dabei kann die Bildung von neuen Produkten und Phasen über die Röntgenstrukturanalyse an BESSY II verfolgt werden.

In einer Kugelmühle werden die Reagenzien vermahlen, dabei kann die Bildung von neuen Produkten und Phasen über die Röntgenstrukturanalyse an BESSY II verfolgt werden. © F. Emmerling/BAM

In der Mechanochemie werden die Reagenzien fein gemahlen und gemischt, so dass sie sich auch ohne Lösungsmittel zum gewünschten Produkt verbinden. Durch den Verzicht auf Lösungsmittel könnte diese Technologie in Zukunft einen wichtigen Beitrag zur "grünen", umweltfreundlichen Herstellung von Chemikalien leisten. Allerdings gibt es noch große Lücken im Verständnis der Schlüsselprozesse, die bei der mechanischen Behandlung und Reaktion ablaufen. Ein internationales Team unter Leitung der Bundesanstalt für Materialforschung (BAM) hat nun an BESSY II eine Methode entwickelt, um diese Prozesse in situ mit Röntgenstreuung zu beobachten. 

Chemische Reaktionen basieren oft auf dem Einsatz von Lösungsmitteln, die die Umwelt belasten. Doch viele Reaktionen können auch ohne Lösungsmittel ablaufen. Dies ist der Ansatz der Mechanochemie, bei dem Reagenzien sehr fein gemahlen und miteinander vermischt werden, so dass sie miteinander reagieren und das gewünschte Produkt bilden.  Der mechanochemische Ansatz ist nicht nur umweltfreundlicher, sondern möglicherweise auch billiger als klassische Synthesemethoden. Die International Union of Pure and Applied Chemistry (IUPAC) zählt die Mechanochemie daher zu den 10 chemischen Innovationen, die unsere Welt verändern werden. Das volle Potenzial dieser Technologie kann jedoch erst dann ausgeschöpft werden, wenn die Vorgänge bei der mechanischen Behandlung genauer verstanden werden, so dass man sie präzise steuern und kontrollieren kann.

Doch was genau bei der mechanischen Behandlung passiert und wie die Reaktionen ablaufen, ist schwierig zu untersuchen. Traditionell wird dazu die Reaktion gestoppt und das Material zur Analyse "ex situ" aus dem Reaktor entnommen. Viele Systeme setzen ihre Umwandlung jedoch auch nach dem Stoppen des Mahlvorgangs fort. Solche Reaktionen können nur durch direkte Untersuchung der Reaktion in situ während der mechanischen Behandlung untersucht werden.

Zeitaufgelöstes in situ Monitoring

Nun hat ein internationales Team mit Dr. Adam Michalchuk und Dr. Franziska Emmerling von der Bundesanstalt für Materialforschung (BAM) sowie Teams der Universität Cambridge und der Universität Parma an der μSpot-Beamline von BESSY II eine Methode entwickelt, um in situ und während der mechanischen Behandlung Einblicke zu gewinnen.

Dazu nutzte das Team eine Kombination aus miniaturisierten Mahlbechern in Verbindung mit Innovationen in der Röntgenpulverdiffraktometrie und modernsten Analysestrategien, um die Qualität der Daten aus dem zeitaufgelösten in situ Monitoring (TRIS) deutlich zu erhöhen.

Winzigste Probenmengen

"Selbst mit außergewöhnlich kleinen Probenmengen erhalten wir eine genaue Zusammensetzung und Struktur jeder Phase im Verlauf der Reaktion", sagt Michalchuk. Sogar mit nur wenigen Milligramm waren gute Ergebnisse möglich. Darüber hinaus können sie die Kristallgröße und andere wichtige Parameter bestimmen. Diese Strategie lässt sich auf alle chemischen Spezies anwenden, ist einfach zu implementieren und liefert selbst mit einer Synchrotronquelle niedriger Energie hochwertige Beugungsdaten.

„Dies bietet einen direkten Weg zur mechanochemischen Untersuchung von Reaktionen mit knappen, teuren oder toxischen Verbindungen“, sagt Emmerling.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.