Ultraschneller Magnetismus: Schnappschuss der Gitterschwingungen

Durch einen Glühfaden wird die Probe während der Messung auf konstante Temperatur geheizt.

Durch einen Glühfaden wird die Probe während der Messung auf konstante Temperatur geheizt. © HZB

Magnetische Festkörper können mit einem kurzen Laserpuls schnell entmagnetisiert werden. Nach diesem Prinzip funktionieren die so genannten HAMR-Speicher (Heat Assisted Magnetic Recording), die bereits auf dem Markt sind. Die mikroskopischen Mechanismen der ultraschnellen Entmagnetisierung sind allerdings noch nicht vollständig geklärt. Ein HZB-Team hat an BESSY II eine Methode entwickelt, um einen dieser mikroskopischen Mechanismen quantitativ zu erfassen. Damit konnten sie nun das Element Gadolinium untersuchen, dessen magnetische Eigenschaften durch Elektronen sowohl auf der 4f- als auch auf der 5d-Schale verursacht werden. Diese Studie vervollständigt eine Reihe von Experimenten, die das Team an Nickel und Eisen-Nickel-Legierungen durchgeführt hat. Das Verständnis dieser Mechanismen ist für die Entwicklung ultraschneller Datenspeicher nützlich.


Neue Materialien sollen Informationsverarbeitung effizienter machen, zum Beispiel durch ultraschnelle spintronische Bauelemente, die Daten mit weniger Energieaufwand speichern. Bislang sind die mikroskopischen Mechanismen der ultraschnellen Entmagnetisierung jedoch noch nicht vollständig verstanden. Um den Prozess der Entmagnetisierung zu untersuchen, schickt man normalerweise einen ultrakurzen Laserpuls auf die Probe, erhitzt sie dadurch plötzlich, und analysiert dann, wie sich das System in den nächsten Pikosekunden entwickelt.

Messung bei konstanter Temperatur

„Unser Ansatz ist anders", erklärt Dr. Régis Decker, Erstautor der neuen Studie. „Wir halten die Probe während der spektroskopischen Messungen auf einer festen Temperatur. Diese Messungen machen wir über einen weiten Temperaturbereich, von -120°C bis 450°C für Gadolinium - und bis zu 1000°C bei den früheren Experimenten mit Nickel und der Eisen-Nickel-Legierung“. Dadurch ist es möglich, bei jeder einzelnen Temperatur die Auswirkungen der Gitterschwingungen (Phononen) auf die ultraschnelle Entmagnetisierung zu quantifizieren. Indem wir die Probe auf einer konstanten Temperatur halten, machen wir einen Schnappschuss der Gitterschwingungen nach dem kurzen Laserpuls.“

Gadolinium im Fokus

Das Element Gadolinium besitzt 4f- und 5d-Elektronenorbitale, die beide zu seinen ferromagnetischen Eigenschaften beitragen. Je höher die Temperatur, desto mehr schwingt das kristalline Gitter – in der Physik sagt man: die Anzahl der Phononen steigt - und desto wahrscheinlicher sind Spin-Flips durch Streuung von Elektronen an Phononen.

Mit der Methode der inelastischen Röntgenstreuung (RIXS) konnten die Physiker*innen nicht nur die Anzahl der Phononen bei einer bestimmten Temperatur bestimmen, sondern auch die Wechselwirkungen zwischen Phononen und 4f- und 5d-Elektronen unterscheiden. Dafür konnten sie auf die strengen röntgenspektroskopischen Symmetrieauswahlregeln zurückgreifen.

Spin-flip nur bei den 5d-Elektronen

Die Daten zeigen, dass es zwischen den lokalisierten 4f-Elektronen und Phononen kaum Wechselwirkung gibt, während die 5d-Elektronen stark an den Phononen gestreut werden, so dass ein Spin-Flip nur dort stattfindet. Die Elektron-Phononen-Streuung gilt als einer der Hauptauslöser der ultraschnellen Entmagnetisierung. Wir zeigen hier, dass beim Element Gadolinium nur die 5d-Elektronen daran beteiligt sind“, sagt Decker. Interessanterweise weisen die Messergebnisse auch auf eine Temperaturschwelle hin, die vom Material abhängt und unterhalb derer dieser Mechanismus nicht auftritt. „Dies deutet auf die Existenz eines anderen mikroskopischen Mechanismus bei niedrigeren Temperaturen hin, wie es die Theorie vorhersagt", erklärt Decker. 

Hinweis: Diese Studie schließt eine Reihe von Experimenten ab, die das HZB-Team an BESSY II mit Nickel, Eisen-Nickel-Legierungen und nun auch mit Gadolinium durchgeführt hat.

Aktuelle Studie zu Gadolinium: 10.1063/5.0063404

Zu Nickel:  10.1038/s41598-019-45242-8  

Zur Eisen-Nickel-Legierung: 10.1038/s41598-021-81177-9

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.