Perowskit-Solarzellen: Defekte fangen Ladungsträger ein - und geben sie wieder frei
Fünf verschiedene Arten von Defekten in MAPI-Perowskiten wurden untersucht und charakterisiert. Das Ergebnis: ein großer Teil der Defekte hält die Ladungsträger nicht lange fest.
© HZB
Ein Team am HZB und der Charles Universität in Prag hat untersucht, wie in den so genannten MAPI-Perowskit-Halbleitern Ladungsträger mit unterschiedlichen Defekten wechselwirken. Die Studie zeigt, dass ein großer Teil der Defekte eingefangene Ladungsträger schnell wieder freigibt. Die Ergebnisse können dazu beitragen, die Eigenschaften von Perowskit-Solarzellen weiter zu verbessern.
Zu den spannendsten Materialien für Solarzellen gehören die sogenannten MAPI-Halbleiter. Sie bestehen aus organischen Methylammonium-Kationen und Bleijodid-Oktaedern, die eine Perowskitstruktur bilden. MAPI-basierte Solarzellen haben innerhalb weniger Jahre Wirkungsgrade von 25 Prozent erreicht. Bislang altern die halborganischen Halbleiter jedoch noch schnell.
Nun hat ein internationales Team am HZB, CNRS, Frankreich und der Charles Universität Prag, Tschechien, erstmals fünf verschiedene Defekttypen in MAPI-Perowskiten genau charakterisiert und die Wechselwirkung zwischen diesen Defekten und den Ladungsträgern gemessen. Mit einer Kombination aus hochempfindlichen Spektroskopiemethoden gelang es ihnen, Konzentration, Energie, Einfangquerschnitt und Ladungseinfangzeit der verschiedenen Defekte experimentell zu bestimmen und eine Karte der Defekte zu erstellen. Durch die Verwendung von elektrischen Pulsen stellten sie sicher, dass die Messungen die Qualität des Materials nicht beeinträchtigten.
Die Messergebnisse ermöglichen die zuverlässige Unterscheidung zwischen Elektronen- und Löchertransport und die Bestimmung ihrer wichtigsten Parameter: Mobilitäten, Lebensdauern und Diffusionslängen. „Damit gibt diese Arbeit Antworten auf Fragen, die schon lange Zeit im Bereich der Perowskit-Solarzellen diskutiert wurden“, sagt Dr. Artem Musiienko, Erstautor der Publikation und Postdoc am HZB.
Eine wichtige Erkenntnis: Ein großer Teil der Defekte gibt die eingefangenen Ladungsträger nach kurzer Zeit wieder frei. „Das könnte eine Erklärung für die besonders hohen Wirkungsgrade der MAPI-Perowskite sein", sagt Musiienko. Diese Ergebnisse ebnen den Weg, MAPI-Perowskite hinsichtlich der Defektkonzentration zu optimieren, um hohe Wirkungsgrade mit guter Stabilität zu kombinieren.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23195;sprache=enA
- Link kopieren
-
Batterieforschung mit dem HZB-Röntgenmikroskop
Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.
-
BESSY II: Neues Verfahren für bessere Thermokunststoffe
Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
-
Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.