Batterieforschung - Projekt SkaLiS mit 2,2 Millionen Euro vom BMBF gefördert

Pouchzellen Labor

Pouchzellen Labor © HZB

SkaLiS Projektteam

SkaLiS Projektteam © HZB

Für die Energiewende werden leistungsstarke, kompakte und günstige Batterien benötigt. Dafür forschen am Helmholtz-Zentrum Berlin (HZB) Gruppen um Prof. Dr. Yan Lu, Dr. Ingo Manke und Dr. Sebastian Risse. Sie untersuchen und entwickeln neuartige Elektroden-Materialien, die auf Schwefel oder Silizium basieren. Nun koordiniert Risse auch noch ein großes Projekt, an dem neben Teams aus dem HZB auch die Universität Potsdam, die Technische Universität Berlin, die Technische Universität Dresden sowie das Fraunhofer Institut für Werkstoff- und Strahltechnik IWS Dresden beteiligt sind.

Das Projekt SkaLiS startet im Juli 2021 und wird in den kommenden drei Jahren mit insgesamt 2,2 Millionen Euro durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert. SkaLiS steht für „Operando-Analyse gestütztes, skalenübergreifendes und skalierbareres Elektroden-Design zur Leistungserhöhung von Lithium-Schwefel-Pouchzellen“.

In SkaLiS (FKZ: 03XP0398) wollen die beteiligten Forschungsgruppen einen Lithium-Schwefel (Li-S) Demonstrator auf Pouchzellenebene herstellen, dessen Kathode gleich auf mehreren Skalen strukturiert ist. Mit diesem Ansatz soll die Li-S Batterie deutlich stabiler und leistungsstärker als bisherige Batteriezellen sein. Für die Bewertung der industriellen Relevanz steht dem Konsortium ein Industriebeirat bestehend aus Vertretern der Firmen Airbus, Rolls-Royce, Wingcopter, Customcells und E-Lyte zur Seite.

Die HZB-Abteilung „Elektrochemische Energiespeicherung“ hat dafür bereits die passende Infrastruktur aufgebaut: Die sogenannte „Pouch-Cell-Line“ – dort lassen sich aus Ausgangsmaterialien in mehreren einfachen Schritten Versuchs-Batterien in einem flachen „Taschenformat“ herstellen (siehe Filmclip).

Im SkaLiS Projekt ist darüber hinaus eine sechsstellige Investition in ein neues Detektorsystem für ein Röntgenkleinwinkel-Instrument vorgesehen. Es wird derzeit am Standort Wannsee in Risses Elektrochemie-Gruppe aufgebaut und ist besonders geeignet, um Materialien wie Batterie-Elektroden zu untersuchen.

Das Kathodenmaterial stellt das Team um die Chemikerin Yan Lu selbst her. Es besteht aus fein vermahlenen Schwefelpartikeln, die in Kohlenstoff mit spezieller Porosität eingelagert werden. Nach der Fertigung der Batteriezelle in Berlin und Dresden werden die elektrochemische Leistungsfähigkeit sowie die Stabilität eingehend mit operando Methoden von den Arbeitsgruppen um Manke und Risse analysiert. Somit lassen sich direkte Rückschlüsse auf die Zellfertigung und die Kathodenmaterial-Synthese ziehen, die auch für die Industrie relevant sind.

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HySPRINT Photovoltaics Lab eingeweiht
    Nachricht
    20.06.2024
    HySPRINT Photovoltaics Lab eingeweiht
    Nach zirka vierjähriger Umbauzeit haben Forschungsgruppen aus der Photovoltaik am 20. Juni 2024 ihre Räumlichkeiten in der Kekuléstraße bezogen. Das Gebäude hat mit der Wiedereröffnung auch einen neuen Namen bekommen, um die Forschung besser sichtbar zu machen: Es trägt nun den Namen HySPRINT Photovoltaics Lab.